Photon induced γ-γ coincidence ^{22.02.2014} **experiments at the γ³-setup at HIyS**

Bastian Löher

b.loeher@gsi.de

B. Löher^{1,2}, T.Aumann⁵, N.Cooper⁶, V.Derya³, J.Endres³, E.Fiori^{1,2}, J.Kelley⁴, N.Pietralla⁵, R.Raut⁴, G.Rusev⁴, D.Savran^{1,2}, A.Tonchev⁴, W.Tornow⁴, V.Werner⁶ and A.Zilges³

¹ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum, Darmstadt ²Frankfurt Institute for Advanced Studies FIAS, Frankfurt ³Institut für Kernphysik, Universität zu Köln, Köln ⁴Department of Physics, Duke University, Durham, USA ⁵Institut für Kernphysik, Technische Universität Darmstadt ⁶WNSL, Yale University, USA ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung

Frankfurt Institute for Advanced Studies FIAS

Decay of the PDR in ¹⁴⁰Ce. First results from the γ^3 coincidence setup at HIyS

22.02.2014

Bastian Löher

EMM

B.Löher^{1,2}, V.Derya³, T.Aumann⁵, J.Beller⁵, N.Cooper⁶, M.Duchêne⁵, J.Endres³, E.Fiori^{1,2}, P.Humby⁶, J.Isaak^{1,2}, J.Kelley⁴, M.Knörzer⁵, N.Pietralla⁵, C.Romig⁵, D.Savran^{1,2}, M.Scheck⁵, H.Scheit⁵, J.Silva^{1,2}, A.Tonchev⁷, W.Tornow⁴, H.Weller⁴, V.Werner⁶ and A.Zilges³

¹ExtreMe Matter Institute EMMI and Research Division,

GSI Helmholtzzentrum, Darmstadt

²Frankfurt Institute for Advanced Studies FIAS, Frankfurt

³Institut für Kernphysik, Universität zu Köln, Köln

⁴Department of Physics, Duke University, Durham, NC, USA

⁵Institut für Kernphysik, Technische Universität Darmstadt

⁶WNSL, Yale University, USA

⁷Lawrence Livermore National Lab, Livermore, CA, USA

ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung

Frankfurt Institute for Advanced Studies FIAS

Motivation

New experimental possibilities at γ^3 to study decay patterns

- Study of the Pygmy Dipole Resonance
- Deeper Investigation of the Scissors Mode
- Two phonon excitations in light and heavy nuclei

Motivation

- M1 Scissor's Mode
- GDR: Oscillation of Neutrons vs. Protons
- PDR: Oscillation of Neutron skin vs. Core
 Bastian Löher | ExtreMe Matter Institute EMMI

PDR GDR Strength [a.u.] x100 15 0 5 10 20 Energy [MeV] U. Kneissl et al., J.Phys.G 32, R217 (2006)

Motivation

Dipole Photoresponse of (spherical) nuclei

- M1 Scissor's Mode
- GDR: Oscillation of Neutrons vs. Protons
- PDR: Oscillation of Neutron skin vs. Core
 Bastian Löher | ExtreMe Matter Institute EMMI

Experimental Method

- Decay "elastic" (Γ₀) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Nuclear Resonance Fluorescence (NRF) $X(\gamma,\gamma')X$

Experimental Method

Weller et al., Prog. Part. Nucl. Phys. 62 (2009) 257

Use:

 Selectivity of NRF reaction and mono-energetic beam
 → Prepare nucleus in well-defined excitation mode

Experimental Method

Combine:

- Selectivity of NRF reaction and mono-energetic beam
- Sensitivity of γ-γ coincidence method
- Select low energy decay

The y³ setup

EN

B. Löher et al., Nucl. Instruments Methods Phys. Res. Sect. A 723, 136–142 (2013).

New detector array at HIγS

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

The y³ setup

EN

B. Löher et al., Nucl. Instruments Methods Phys. Res. Sect. A 723, 136–142 (2013).

New detector array at HIγS

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

The y³ setup

Total efficiency: >7% @ 1.3 MeV (LaBr+HPGe)

Experiments

- Commissioning phase 2012 (³²S)
- Experimental Campaign 2012
- Experimental Campaign 2013

Setup Commissioning

Detectors:

- 4x HPGe (60%)
- + 4x 3"x3" LaBr
 - Target: ³²S @ 8.125 MeV beam energy
 - Beam on Target: 4 h

Bastian Löher | ExtreMe Matter Institute EMMI

17

Experiments

- Commissioning phase 2012 (³²S)
- Experimental Campaign 2012
- Experimental Campaign 2013

Experiments

Beam time 2012:

- 700 h of beam time in 5+1 weeks
- Investigated 7+3 nuclei:
- ¹²⁴Sn, ¹⁴⁰Ce, ⁷⁶Ge, ⁴⁰Ca, ¹⁵⁶Gd + ²⁴⁰Pu, ²³³U, ³²S

Beam time 2013:

- >700 h of beam time in 8 weeks
- Investigated 9+2 nuclei:
 - ¹²⁸Te, ^{152,156}Gd, ¹⁴⁰Ce, ^{92,94}Zr, ²⁰⁶Pb, ^{162,164}Dy + ¹¹B, ³²S

Goals:

• Parities, Decay of Scissors Mode and PDR, Measurement of the PSF, 2 phonon state

Experiments

Beam time 2012:

- 700 h of beam time in 5+1 weeks
- Investigated 7+3 nuclei:
- ¹²⁴Sn, ¹⁴⁰Ce, ⁷⁶Ge, ⁴⁰Ca, ¹⁵⁶Gd + ²⁴⁰Pu, ²³³U, ³²S

Beam time 2013:

- >700 h of beam time in 8 weeks
- Investigated 9+2 nuclei:
 - ¹²⁸Te, ^{152,156}Gd, ¹⁴⁰Ce, ^{92,94}Zr, ²⁰⁶Pb, ^{162,164}Dy + ¹¹B, ³²S

Goals:

• Parities, Decay of Scissors Mode and PDR, Measurement of the PSF, 2 phonon state

EMM

¹⁴⁰Ce (γ,γ')

EMM

¹⁴⁰Ce (γ,γ')

EMM

Experiment at HI_γS:

- 5 days of beamtime
- 11 Beam energies (+2 in 2013)
- ~100 h beam on target
- Target: 2.35 g enriched ¹⁴⁰CeO₂

Analysis:

- Singles \rightarrow Cross-Sections, Parities
- Coincidences → Branching Ratios

¹⁴⁰Ce (γ,γ')

Experimental data yields two matrices:

HPGE1EC:LABR1EC (HPGE1EC>=100 && LABR1EC>=390 && HPGE1T>0 && LABR1T>0) LABR1EC:LABR2EC {LABR1EC>=390 && LABR2EC>=100 && LABR1T>0 && LABR2T>0} sum2d sum2d 5000 Entries 2.252807e+07 Entries 1.470472e+07 5.6 MeV 5000 5.6 MeV 1437 Mean 1350 Mean : 4500 Mean 1251 Mean 1415 4500 RMS x 516.1 RMS x 583.9 RMS v RMS \ 517.1 553.2 4000 4000 HPGe 3500 3500 LaBr 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 4500 5000 LaBr LaBr Ex Possible analyses: ~5.6 MeV • Gate on $2^+_1 \rightarrow 0^+$ in LaBr: 1) HPGe spectra (high resolution \rightarrow single states) ~4000 keV Γ_0 Γ_0 Γ. Beam energy 2^{+}_{1} 1596 keV 0^{+}_{1} Intensity ¹⁴⁰Ce

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow HPGe spectra

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow HPGe spectra

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow HPGe spectra

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow HPGe spectra

EN

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow HPGe spectra

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow LaBr spectra

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

Gate on LaBr \rightarrow LaBr spectra

EMMI

¹⁴⁰Ce (γ,γ')

Average branching ratio to first excited states

¹⁴⁰Ce (γ,γ')

- Determine branching ratios of single states (Sensitivity 1-5%)
- Average branching ratios (Sensitivity ~1%)

Summary

- γ-γ coincidence method to increase sensitivity for weak transitions
- The new γ³ setup at HIγS
- Commissioning with ³²S
- PDR in ¹⁴⁰Ce
- Analysis of coincidences
- Now possible to measure Single and Average branching ratios, → Good agreement with QPM

PDR

Bormio 2012

EMMI/GSI

- B.Löher, E.Fiori, J.Isaak, D.Savran, J.Silva
- TU Darmstadt
 - T.Aumann, J.Beller, M.Duchêne, M.Knörzer, N.Pietralla, M.Scheck, H.Scheit
- Universität zu Köln (Cologne)
 - V.Derya, J.Endres, A.Zilges
- HlγS (Duke University)
 - M.Bhike, M.Gooden, J.Kelley, A.Tonchev, W.Tornow, H.Weller

Yale University

N.Cooper, P.Humby, V.Werner

¹⁴⁰Ce LaBr Unfolded

