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Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook



  

What is a data acquisition system (DAQ)?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk



  

What is MBS?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk



  

What is MBS?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk

Responsibility
of the user



  

What is MBS?

● Some facts:
– Started in 1993
– Over 90 systems installed world wide (2011)
– Based on real-time LynxOS or Linux
– Support for VME, VXI, CAMAC, FASTBUS, PCI & PCIe
– Data transport via address mapped buses or TCP/IP



  

SBS – A simple (single) branch system

● Only a single VME crate or PC
● Any MBS consists of two parts:

– Hardware:
● Trigger module (TRIVA, TRIXOR, VULOM)
● Readout processor (RIO2, RIO3, RIO4, x86 PC)

– Software:
● m_read_meb – Data readout to internal data pipe
● m_collector – Collect data from pipe to event buffer
● m_transport – Transport data over network
● m_stream_serv – Serve additional data stream (e.g. for online)



  

SBS – A simple (single) branch system

● VME crate example
– Readout speed

● Single cycle: ~7 MB/s
● 64 bit block transfer: ~40 MB/s
● 2eSST: ~150 MB/s
● VME access time: ~500 ns
● Trigger to readout latency: 5-10 us
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TRIVA7 trigger module
- 15 trigger inputs
- Deadtime output

ReadOut Controller:
- Gigabit ethernet
- Network booted (no disk)
- Either Linux or LynxOS
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VME User LOgic Module:
- Provides deadtime locking
  with TRIVA7
- 16 ECL inputs and outputs
- 2 LEMO inputs and outputs



  

TRIVA7 – Trigger module

● Shows DAQ status via LEDs
● Receives 4bit encoded trigger number

– 13 experiment triggers
– 14, 15 reserved for start and stop

● Deadtime / busy output
● Master trigger output
● Connects several MBS subsystems

via trigger bus
● Generates interrupt to start

data readout

LEDs

Trigger bus

Trigger input

Trigger out
Deadtime out

GSI Helmholtzzentrum für Schwerionenforschung GmbH



  

VULOM4 – User Logic module

● Standard firmware:
– 13 trigger inputs
– Deadtime locked trigger outputs
– Delay (input-output): ~30 ns
– Jitter: ~2.5 ns
– Connects to TRIVA7 for signal

exchange

LCD display

16 Inputs

Triva comm

16 outputs

2 inputs
2 outputs

GSI Helmholtzzentrum für Schwerionenforschung GmbH



  

SBS – A simple (single) branch system

● Software:
– Today developed and maintained by Nik Kurz (GSI)
– Production version: 6.2
– Most parts are generic, i.e. experiment independent
– User needs to focus on:

● m_read_meb – readout code
● setup.usf – user setup file for each subsystem



  

SBS – A simple (single) branch system

● m_read_meb:
– Main readout loop, contains three entry points for user code

● f_user_get_virt_ptr()
– Create virtual pointers to the hardware (memory mapping or DMA setup)

● f_user_init()
– Setup hardware (configure settings, set thresholds, etc …)

● f_user_readout()
– Read data from hardware

– These must be implemented in the f_user.c file and
compiled into the complete m_read_meb



  

SBS – A simple (single) branch system

● setup.usf:
– Main setup file for a single system with many options, e.g.

● LOC_MEM_BASE: vme address start
● LOC_MEM_LEN: vme memory size
● LOC_PIPE_BASE: data pipe address
● PIPE_SEG_LEN: data pipe size
● PIPE_LEN: max. number of sub-events in pipe
● RD_FLAG: switch readout on/off
● COL_MODE: switch local event building on/off
● TRIG_CVT: trigger conversion delay



  

SBS – A simple (single) branch system

● setup.usf:
– Main setup file for a single system with many options, e.g.

● LOC_MEM_BASE: vme address start
● LOC_MEM_LEN: vme memory size
● LOC_PIPE_BASE: data pipe address
● PIPE_SEG_LEN: data pipe size
● PIPE_LEN: max. number of sub-events in pipe
● RD_FLAG: switch readout on/off
● COL_MODE: switch local event building on/off
● TRIG_CVT: trigger conversion delay

Usually does
Not need to
Be touched



  

SBS – A simple (single) branch system

● Directory structure:
– rio4-1:

● Makefile – Compile m_read_meb
● f_user.c – User functions
● setup.usf – User setup file
● start.scom – Startup script
● stop.scom – Shutdown script
● m_read_meb – compiled readout



  

SBS – A simple (single) branch system

● Start and shutdown scripts (VME, single crate):
– Any file with .scom can be used from MBS command line
start.scom:
start task m_util
load setup setup.usf
set trig_mod
enable irq
start task ./m_read_meb
start task m_collector
start task m_transport
start task m_stream_serv
start task m_daq_rate
set stream 1
start acq

stop.scom:
stop task m_daq_rate    -kill
stop task m_stream_serv -kill
stop task m_transport   -kill
stop task m_collector   -kill
stop task m_read_meb    -kill
stop task m_util        -kill



  

SBS – A simple (single) branch system

● Starting MBS:

rio4-1> resl    # reset local MBS
rio4-1> mbs     # start MBS command line

mbs> @start     # execute start.scom script
. . .
-rio4-1 :collector  :acquisition running

mbs> sho(w) acq(uisition)
-rio4-1 :util :Collected: 0.0164 MB,   1 Buffers, 17 Events.
-rio4-1 :util :Rate     :    0 KB/s, 0 Buffers/s, 1 Events/s

mbs> @stop      # execute stop.scom script



  

SBS – A simple (single) branch system

● Writing data:
– Requires a running RFIO server on the fileserver PC
– MBS supplies rawDispRFIO64 
– Storage location is specified in filenum.set

mbs> connect rfio lxgs08 -diskserver   # Connect to server

mbs> open file size=1000 -auto -rfio   # Open new file
mbs> close file                        # Close file

filenum.set:
rfiocopy:lxgs08:/data/lmd/run001_
1000



  

SBS – A simple (single) branch system

● Data format:
– LMD (list mode data) format encapsulates data from modules in 

subevents, which are combined into one event per trigger
– Each event has a unique event number and can contain any number of 

subevents
– Each subevent within an event has a unique combination of

type-subtype-control-subcrate numbers used for sorting
– The maximum size of subevents is specified in the setup.usf file
– The event_api library can be used to unpack / sort LMD files
– In reality we make use of the ucesb unpacker



  

SBS – A simple (single) branch system

● Monitoring – The rate program

rio4-1> rate
# Event building                | Server | File output 
#  MB     Events Kb/sec  Ev/sec | Kb/sec |  Kb/sec Index 
  1714    615378   16.4      10 |    0.0 |     0.0  0001  cl
  1714    615388    0.0      10 |    0.0 |     0.0  0001  cl
  1714    615398    0.0      10 |    0.0 |     0.0  0001  cl
  1714    615408   16.4      10 |    0.0 |     0.0  0001  cl
  1714    615418   16.4      10 |    0.0 |     0.0  0001  cl
  1714    615428    0.0      10 |    0.0 |     0.0  0001  cl
...



  

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
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● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
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SBS to MBS (multi branch system)

● Multiple subsystems require synchronisation based on
– Trigger (single deadtime domain)
– Timestamp (multiple deadtime domains)

● Needs separate event builder PC to combine subsystem 
subevent data

● Timestamp synchronisation needs time sorter PC
● Possible to combine both methods



  

SBS to MBS (multi branch system)

● Trigger synchronisation uses trigger bus
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MasterMaster Slave

Propagate TRIVA7
signals (dt, go, ...)

Event builder
PC

TCP/IP
with up to 10 GBit

Up to 31 subsystems
Trigger bus length >250 m
Event builder data rate >500 MB/s
Single deadtime domain



  

MBS – NxM configuration

● N subsystems with M event builders for high data rate 
applications

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem N

…

Eventbuilder 1

Eventbuilder 2

Eventbuilder M

…

Triggerbus
connects

all subsystems



  

SBS to MBS (multi branch system)

● Timestamp synchronisation with timestamp modules
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Synchronize clocks

Time sorter
Event builder

TCP/IP
with up to 10 GBit

Up to 31 subsystems
Time resolution 8 ns (PCIe 1 ns)
Each subsystem has its own
deadtime domain

Latch Latch



  

SBS to MBS (multi branch system)

● Setup file setup.mo needed to specify layout
● Data senders (subsystems):

– DS_HOSTNAME_0 = „rio4-1“

– DS_HOSTNAME_1 = „rio4-2“

● Data readers (event builders)
– DR_HOSTNAME_0 = „x86g-1“

● start.scom and stop.scom files look slightly different



  

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
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MBS @ Duke

● Readout of 4 HPGe and 4 LaBr detectors
● Single VME crate setup

– Used for LaBr singles and coincidences
– Data rate: 2-4 MB/s
– Event rate: 6-10k Events/s at 20-30% deadtime
– Deadtime / event: ~70 us
– Uses TRLOII for trigger conditions and downscaling, scalers
– Uses nurdlib for module readout
– Uses ucesb for unpacking / sorting



  

MBS @ R3B / LAND (oct 2014)

● Readout of 15 different detector types spread 
across 3 experimental sites

● 12 VME crates + 9 PCs, 6 event builder PCs, 10 
Gbit Timeorder PC

● 5 deadtime domains, 2 trigger bus chains, 1 
trimi link master

● Combined serial timestamp distribution and 
White rabbit timing

● 13 different detector triggers used in main DAQ
● Data rate at time order PC: 20-200 MB/s
● Event rate: 200 - 10000 Events/s depending on 

deadtime domain
● Uses TRLOII / nurdlib / ucesb



  

MBS @ R3B / LAND (oct 2014)

● Readout of 15 different detector types spread 
across 3 experimental sites

● 12 VME crates + 9 PCs, 6 event builder PCs, 10 
Gbit Timeorder PC

● 5 deadtime domains, 2 trigger bus chains, 1 
trimi link master

● Combined serial timestamp distribution and 
White rabbit timing

● 13 different detector triggers used in main DAQ
● Data rate at time order PC: 20-200 MB/s
● Event rate: 200 - 10000 Events/s depending on 

deadtime domain
● Uses TRLOII / nurdlib / ucesb

Reasonable
extensions to

MBS



  

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook



  

Warning!

You are now leaving the realm of
MBS-supported software!

Use at your own risk!



  

Warning!

You are now leaving the realm of
MBS-supported software!

Use at your own risk!

This does not mean you won‘t find
any help, just don‘t rely on it at 3 am

in the morning.



  

VULOM4 – User Logic module

● Standard firmware:
– 13 trigger inputs
– Deadtime locked trigger outputs
– Delay (input-output): ~30 ns
– Jitter: ~2.5 ns

LCD display

16 Inputs

Triva comm

16 outputs

2 inputs
2 outputs

GSI Helmholtzzentrum für Schwerionenforschung GmbH



  

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– 16 trigger inputs with variable delay 

and stretcher
– Trigger matrix for coincidences
– Deadtime locked master trigger
– Trigger reduction (downscaler)
– Scalers everywhere
– Multi-event trigger buffer

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/



  

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Generic pulsers
– Generic logic matrix unit
– Gate and delay generators
– Edge to gate converters
– Fan-In (OR) function
– Generic coincidence units

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/



  

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Additional scalers
– Timer latches
– Self-triggering soft scope

(for input time alignment)
– Front-panel LEDs and LCD

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

Capable of replacing a crate full
of NIM delays, LMUs, trigger boxes,

pulsers, scalers and FIFOs.



  

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Serial timestamp input/output 

(ratatime) with 10 ns resolution
– TRIVA7 mimic (TRIMI)
– TRIMI link to act as triggerbus 

replacement (ratatrig)

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

Even replaces the TRIVA7 module
and additional Timestamp modules.



  

VULOM4 – With TRLOII

● TRLOII is very complex with 500 setup registers and 200 
multiplexable signals

● trloctrl program:
– Can control and monitor a VULOM4 with installed TRLOII firmware
– Configuration of TRLOII via setup files (vulom.trlo)

● Try:
– trloctrl --addr=2 --print-config

– trloctrl --addr=2 --mux-src-scalers

http://fy.chalmers.se/~f96hajo/trloii/



  

Nustar Readout Library - nurdlib

http://webdocs.gsi.de/~land/nurdlib/



  

Nustar Readout Library - nurdlib

● The missing piece in MBS: readout code -> Nurdlib fills the gap!
● Main Features:

– Text-based configuration of crate layout and readout modules
– Sane default configurations included
– Independent of platform or DAQ environment
– Online data integrity checking
– Multi-event support
– Single cycle and block transfer (DMA) modes where supported
– Strict ansi C compliance and harsh GCC flags

http://webdocs.gsi.de/~land/nurdlib/



  

Nustar Readout Library - nurdlib

● Supported hardware:
– CAEN V775/785/792/830/895/965/1190/1290
– Mesytec MADC32/MTDC32/MQDC32
– GSI SAM4&5/TACQUILA/VULOM/VETAR/VFTX2/VUPROM
– Struck SIS3316

● ~700 lines of code per module

http://webdocs.gsi.de/~land/nurdlib/



  

Nustar Readout Library - nurdlib

● Example config file:

http://webdocs.gsi.de/~land/nurdlib/

CRATE("XBL") {
acvt = true
GSI_VULOM(0x02000000) {

trlo2_master = true
trlo2_timerlatcher = true
trlo2_timestamper = true

}
MESYTEC_MADC32(0x00700000) {}
MESYTEC_MADC32(0x00710000) {}
MESYTEC_MADC32(0x00720000) {}
MESYTEC_MADC32(0x00730000) {}
GSI_VUPROM(0x05000000) {}

}

CRATE("TOF") {
    GSI_VULOM(0x02000000) {}
    BARRIER
    GSI_VFTX2(32, 0x09000000) {
            channel_invert = 0xaaaa
    }
    GSI_VFTX2(32, 0x0a000000) {
            channel_invert = 0xaaaa
    }
    GSI_VFTX2(32, 0x0b000000) {
            channel_invert = 0xaaaa
    }
}



  

Nustar Readout Library - nurdlib

● Nurdlib and MBS -> r3bfuser
– Needs ‚glue code‘ to attach nurdlib to the MBS functions in the 
f_user.c file

– r3bfuser aims to be generic glue code for MBS and nurdlib
– Simplified:

● f_user_get_virt_ptr() does nothing
● f_user_init() calls nurdlib_setup(„main.cfg“)
● f_user_readout() calls crate_readout()

http://webdocs.gsi.de/~land/nurdlib/



  

Nustar Readout Library - nurdlib

● Directory structure:
– rio4-1:

● setup.usf – User setup file
● start.scom – Startup script
● stop.scom – Shutdown script
● vulom.trlo – TRLOII setup file
● main.cfg – nurdlib setup file

– nurdlib

– trloii

– r3bfuser



  

Unpack and check every single bit - ucesb

http://fy.chalmers.se/~f96hajo/ucesb/



  

Unpack and check every single bit - ucesb

● ucesb is a generic unpacker generator
– Based on a specification file an experiment specific data unpacker is 

generated
– Transforms LMD (and other) event-wise packed data into ROOT files (or 

PAW ntuples)
– Physical (hardware) channels are mapped to logical (detector) channels, 

support for multi-hit and multi-event data
– Calibration can be applied in the same process

http://fy.chalmers.se/~f96hajo/ucesb/

# Read stream output from rio4-1 and write to test.root file
# ROOT file contains a tree ‚h101‘ with mapped detector
# branches
> ./ucesb stream://rio4-1 --ntuple=RAW,test.root



  

Unpack and check every single bit - ucesb

● ucesb is a data stream multiplexer
– Reads from MBS stream or transport or event server output, 

from an LMD file, from the output of another ucesb instance
– Filters based on event and subevent type
– Writes MBS-like stream output, writes to file or sends data in a 

fixed structure over network

http://fy.chalmers.se/~f96hajo/ucesb/

# Read stream output from rio4-1 and serve only events with
# type 88 it on the network on port 8000
> ./ucesb stream://rio4-1 --server=stream:8000,incl=type=88



  

Unpack and check every single bit - ucesb

● ucesb is a time sorter and event stitcher
– Sorts events from several input streams into a single output 

stream based on a timestamp (white rabbit or titris style)
– Stitches events from different subsystems together with 

matching timestamps (closer than N timestamp units)

http://fy.chalmers.se/~f96hajo/ucesb/

# Read two streams and combine, then do time-stitching
> ucesb --stream=rio4-1 --stream=rio4-2 --merge=wr,2 \
  | ucesb --file=- --time-stitch=40 --ntuple=RAW,test.root



  

Unpack and check every single bit - ucesb

● ucesb is a DAQ debugging tool
– Gives instant access to LMD event and subevent data structure
– Shows where in the data stream the unpacking failed
– Shows ascii histograms of detector channels

● ucesb can be extended by user functions

http://fy.chalmers.se/~f96hajo/ucesb/

ucesb is your swiss army knife for
event sorting and data handling 



  

ucesb and TRLOII

● TRLOII experiment specific scaler display (via ucesb)

http://fy.chalmers.se/~f96hajo/trloii/

Spill: 25503      TrigType: 1       Mon Sep 23 06:45:49 2013

 #        ID     Raw #              ID    B. DT   A. DT  A. Red   FC effDT   Red 2^n
 1: LaBrOR L   14236 #  1:Singl LaBr H      246     228     228 100%  7.3%   1.0   0
 2: LaBrOR H     246 #  2:Singl HPGe H      207     183     183 100% 11.6%   1.0   0
 3: HPGeOR L    5907 #  3:Coinc  L-L        134     116     116 100% 13.4%   1.0   0
 4: HPGeOR H     207 #  4:Coinc  L-H          8       8       8 100%  0.0%   1.0   0
 5: LaBr M L      69 #  5:LaBr M H            7       6       6 100% 14.3%   1.0   0
 6: LaBr M H       3 #  6:HPGe M H            5       5       5 100%  0.0%   1.0   0
 7: HPGe M L      19 #  7:Zero Degree         0       0       0    -     -         -
 8: HPGe M H       2 #  8:Pulser         101643   96531      94 100%  5.0%1026.9  10
 9: Paddle      4744 #  9:Singl LaBr  L   14236   12574      98 100% 11.7% 128.3   7
10: HPGe0deg       0 # 10:Singl HPGe  L    5907    5170      80 100% 12.5%  64.6   6
11: RF       5652345 # 11:Coinc  H-L          2       2       2 100%  0.0%   1.0   0
12: Pulser    101643 # 12:     --             0       0       0    -     -         -
13: CRM 1       9711 # 13:     --             0       0       0    -     -         -
14: CRM 2       6065 # 14:     --             0       0       0    -     -         -
15: CRM 3       4830 # 15:     --             0       0       0    -     -         -
16: CRM 4      18690 # 16:     --             0       0       0    -     -         -
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Outlook - What‘s cooking...

● Currently gearing up for 2016 beam time at GSI
● Investigating a successor of MBS with

– same f_user.c interface, same MBS data format
– faster startup time
– higher flexibility and better fault handling in multi-crate setups
– auto-connect of temporarily missing or new crates
– tightly coupled to ucesb for data transport

● Triggerbus handling from TRIMI, to fully replace TRIVA7 in all instances
● Improved version of VULOM for Nustar signal exchange points. To act as 

generic signal relay station
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