

GSI MBS – Multi Branch System

Bastian Löher
18.05.2016

Institut für Kernphysik – Universität zu Köln

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook

What is a data acquisition system (DAQ)?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk

What is MBS?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk

What is MBS?

● Handle trigger signals from detectors
● Make a trigger decision
● Read data from hardware to memory
● Check data integrity
● Transport data through the network
● Store data to disk

Responsibility
of the user

What is MBS?

● Some facts:
– Started in 1993
– Over 90 systems installed world wide (2011)
– Based on real-time LynxOS or Linux
– Support for VME, VXI, CAMAC, FASTBUS, PCI & PCIe
– Data transport via address mapped buses or TCP/IP

SBS – A simple (single) branch system

● Only a single VME crate or PC
● Any MBS consists of two parts:

– Hardware:
● Trigger module (TRIVA, TRIXOR, VULOM)
● Readout processor (RIO2, RIO3, RIO4, x86 PC)

– Software:
● m_read_meb – Data readout to internal data pipe
● m_collector – Collect data from pipe to event buffer
● m_transport – Transport data over network
● m_stream_serv – Serve additional data stream (e.g. for online)

SBS – A simple (single) branch system

● VME crate example
– Readout speed

● Single cycle: ~7 MB/s
● 64 bit block transfer: ~40 MB/s
● 2eSST: ~150 MB/s
● VME access time: ~500 ns
● Trigger to readout latency: 5-10 us

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

V
U
L
O
M

TRIVA7 trigger module
- 15 trigger inputs
- Deadtime output

ReadOut Controller:
- Gigabit ethernet
- Network booted (no disk)
- Either Linux or LynxOS

T
R
I
G
G
E
R

VME User LOgic Module:
- Provides deadtime locking
 with TRIVA7
- 16 ECL inputs and outputs
- 2 LEMO inputs and outputs

TRIVA7 – Trigger module

● Shows DAQ status via LEDs
● Receives 4bit encoded trigger number

– 13 experiment triggers
– 14, 15 reserved for start and stop

● Deadtime / busy output
● Master trigger output
● Connects several MBS subsystems

via trigger bus
● Generates interrupt to start

data readout

LEDs

Trigger bus

Trigger input

Trigger out
Deadtime out

GSI Helmholtzzentrum für Schwerionenforschung GmbH

VULOM4 – User Logic module

● Standard firmware:
– 13 trigger inputs
– Deadtime locked trigger outputs
– Delay (input-output): ~30 ns
– Jitter: ~2.5 ns
– Connects to TRIVA7 for signal

exchange

LCD display

16 Inputs

Triva comm

16 outputs

2 inputs
2 outputs

GSI Helmholtzzentrum für Schwerionenforschung GmbH

SBS – A simple (single) branch system

● Software:
– Today developed and maintained by Nik Kurz (GSI)
– Production version: 6.2
– Most parts are generic, i.e. experiment independent
– User needs to focus on:

● m_read_meb – readout code
● setup.usf – user setup file for each subsystem

SBS – A simple (single) branch system

● m_read_meb:
– Main readout loop, contains three entry points for user code

● f_user_get_virt_ptr()
– Create virtual pointers to the hardware (memory mapping or DMA setup)

● f_user_init()
– Setup hardware (configure settings, set thresholds, etc …)

● f_user_readout()
– Read data from hardware

– These must be implemented in the f_user.c file and
compiled into the complete m_read_meb

SBS – A simple (single) branch system

● setup.usf:
– Main setup file for a single system with many options, e.g.

● LOC_MEM_BASE: vme address start
● LOC_MEM_LEN: vme memory size
● LOC_PIPE_BASE: data pipe address
● PIPE_SEG_LEN: data pipe size
● PIPE_LEN: max. number of sub-events in pipe
● RD_FLAG: switch readout on/off
● COL_MODE: switch local event building on/off
● TRIG_CVT: trigger conversion delay

SBS – A simple (single) branch system

● setup.usf:
– Main setup file for a single system with many options, e.g.

● LOC_MEM_BASE: vme address start
● LOC_MEM_LEN: vme memory size
● LOC_PIPE_BASE: data pipe address
● PIPE_SEG_LEN: data pipe size
● PIPE_LEN: max. number of sub-events in pipe
● RD_FLAG: switch readout on/off
● COL_MODE: switch local event building on/off
● TRIG_CVT: trigger conversion delay

Usually does
Not need to
Be touched

SBS – A simple (single) branch system

● Directory structure:
– rio4-1:

● Makefile – Compile m_read_meb
● f_user.c – User functions
● setup.usf – User setup file
● start.scom – Startup script
● stop.scom – Shutdown script
● m_read_meb – compiled readout

SBS – A simple (single) branch system

● Start and shutdown scripts (VME, single crate):
– Any file with .scom can be used from MBS command line
start.scom:
start task m_util
load setup setup.usf
set trig_mod
enable irq
start task ./m_read_meb
start task m_collector
start task m_transport
start task m_stream_serv
start task m_daq_rate
set stream 1
start acq

stop.scom:
stop task m_daq_rate -kill
stop task m_stream_serv -kill
stop task m_transport -kill
stop task m_collector -kill
stop task m_read_meb -kill
stop task m_util -kill

SBS – A simple (single) branch system

● Starting MBS:

rio4-1> resl # reset local MBS
rio4-1> mbs # start MBS command line

mbs> @start # execute start.scom script
. . .
-rio4-1 :collector :acquisition running

mbs> sho(w) acq(uisition)
-rio4-1 :util :Collected: 0.0164 MB, 1 Buffers, 17 Events.
-rio4-1 :util :Rate : 0 KB/s, 0 Buffers/s, 1 Events/s

mbs> @stop # execute stop.scom script

SBS – A simple (single) branch system

● Writing data:
– Requires a running RFIO server on the fileserver PC
– MBS supplies rawDispRFIO64
– Storage location is specified in filenum.set

mbs> connect rfio lxgs08 -diskserver # Connect to server

mbs> open file size=1000 -auto -rfio # Open new file
mbs> close file # Close file

filenum.set:
rfiocopy:lxgs08:/data/lmd/run001_
1000

SBS – A simple (single) branch system

● Data format:
– LMD (list mode data) format encapsulates data from modules in

subevents, which are combined into one event per trigger
– Each event has a unique event number and can contain any number of

subevents
– Each subevent within an event has a unique combination of

type-subtype-control-subcrate numbers used for sorting
– The maximum size of subevents is specified in the setup.usf file
– The event_api library can be used to unpack / sort LMD files
– In reality we make use of the ucesb unpacker

SBS – A simple (single) branch system

● Monitoring – The rate program

rio4-1> rate
Event building | Server | File output
MB Events Kb/sec Ev/sec | Kb/sec | Kb/sec Index
 1714 615378 16.4 10 | 0.0 | 0.0 0001 cl
 1714 615388 0.0 10 | 0.0 | 0.0 0001 cl
 1714 615398 0.0 10 | 0.0 | 0.0 0001 cl
 1714 615408 16.4 10 | 0.0 | 0.0 0001 cl
 1714 615418 16.4 10 | 0.0 | 0.0 0001 cl
 1714 615428 0.0 10 | 0.0 | 0.0 0001 cl
...

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook

SBS to MBS (multi branch system)

● Multiple subsystems require synchronisation based on
– Trigger (single deadtime domain)
– Timestamp (multiple deadtime domains)

● Needs separate event builder PC to combine subsystem
subevent data

● Timestamp synchronisation needs time sorter PC
● Possible to combine both methods

SBS to MBS (multi branch system)

● Trigger synchronisation uses trigger bus

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

V
U
L
O
M

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

V
U
L
O
M

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

MasterMaster Slave

Propagate TRIVA7
signals (dt, go, ...)

Event builder
PC

TCP/IP
with up to 10 GBit

Up to 31 subsystems
Trigger bus length >250 m
Event builder data rate >500 MB/s
Single deadtime domain

MBS – NxM configuration

● N subsystems with M event builders for high data rate
applications

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem N

…

Eventbuilder 1

Eventbuilder 2

Eventbuilder M

…

Triggerbus
connects

all subsystems

SBS to MBS (multi branch system)

● Timestamp synchronisation with timestamp modules

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

V
U
L
O
M

T
I

M
E

R
O
C

T
R
I
G
G
E
R

T
D
C

A
D
C

Q
D
C

T
R
I
G
G
E
R

V
U
L
O
M

T
I

M
E

MasterMaster, subsystem 1 Master, subsystem 2

Synchronize clocks

Time sorter
Event builder

TCP/IP
with up to 10 GBit

Up to 31 subsystems
Time resolution 8 ns (PCIe 1 ns)
Each subsystem has its own
deadtime domain

Latch Latch

SBS to MBS (multi branch system)

● Setup file setup.mo needed to specify layout
● Data senders (subsystems):

– DS_HOSTNAME_0 = „rio4-1“

– DS_HOSTNAME_1 = „rio4-2“

● Data readers (event builders)
– DR_HOSTNAME_0 = „x86g-1“

● start.scom and stop.scom files look slightly different

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook

MBS @ Duke

● Readout of 4 HPGe and 4 LaBr detectors
● Single VME crate setup

– Used for LaBr singles and coincidences
– Data rate: 2-4 MB/s
– Event rate: 6-10k Events/s at 20-30% deadtime
– Deadtime / event: ~70 us
– Uses TRLOII for trigger conditions and downscaling, scalers
– Uses nurdlib for module readout
– Uses ucesb for unpacking / sorting

MBS @ R3B / LAND (oct 2014)

● Readout of 15 different detector types spread
across 3 experimental sites

● 12 VME crates + 9 PCs, 6 event builder PCs, 10
Gbit Timeorder PC

● 5 deadtime domains, 2 trigger bus chains, 1
trimi link master

● Combined serial timestamp distribution and
White rabbit timing

● 13 different detector triggers used in main DAQ
● Data rate at time order PC: 20-200 MB/s
● Event rate: 200 - 10000 Events/s depending on

deadtime domain
● Uses TRLOII / nurdlib / ucesb

MBS @ R3B / LAND (oct 2014)

● Readout of 15 different detector types spread
across 3 experimental sites

● 12 VME crates + 9 PCs, 6 event builder PCs, 10
Gbit Timeorder PC

● 5 deadtime domains, 2 trigger bus chains, 1
trimi link master

● Combined serial timestamp distribution and
White rabbit timing

● 13 different detector triggers used in main DAQ
● Data rate at time order PC: 20-200 MB/s
● Event rate: 200 - 10000 Events/s depending on

deadtime domain
● Uses TRLOII / nurdlib / ucesb

Reasonable
extensions to

MBS

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook

Warning!

You are now leaving the realm of
MBS-supported software!

Use at your own risk!

Warning!

You are now leaving the realm of
MBS-supported software!

Use at your own risk!

This does not mean you won‘t find
any help, just don‘t rely on it at 3 am

in the morning.

VULOM4 – User Logic module

● Standard firmware:
– 13 trigger inputs
– Deadtime locked trigger outputs
– Delay (input-output): ~30 ns
– Jitter: ~2.5 ns

LCD display

16 Inputs

Triva comm

16 outputs

2 inputs
2 outputs

GSI Helmholtzzentrum für Schwerionenforschung GmbH

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– 16 trigger inputs with variable delay

and stretcher
– Trigger matrix for coincidences
– Deadtime locked master trigger
– Trigger reduction (downscaler)
– Scalers everywhere
– Multi-event trigger buffer

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Generic pulsers
– Generic logic matrix unit
– Gate and delay generators
– Edge to gate converters
– Fan-In (OR) function
– Generic coincidence units

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Additional scalers
– Timer latches
– Self-triggering soft scope

(for input time alignment)
– Front-panel LEDs and LCD

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

Capable of replacing a crate full
of NIM delays, LMUs, trigger boxes,

pulsers, scalers and FIFOs.

VULOM4 – With TRLOII

● Trigger Logic 2 firmware:
– Serial timestamp input/output

(ratatime) with 10 ns resolution
– TRIVA7 mimic (TRIMI)
– TRIMI link to act as triggerbus

replacement (ratatrig)

LCD display

16 Inputs

16 Inputs
or outputs

16 outputs

2 inputs
2 outputs

http://fy.chalmers.se/~f96hajo/trloii/

Even replaces the TRIVA7 module
and additional Timestamp modules.

VULOM4 – With TRLOII

● TRLOII is very complex with 500 setup registers and 200
multiplexable signals

● trloctrl program:
– Can control and monitor a VULOM4 with installed TRLOII firmware
– Configuration of TRLOII via setup files (vulom.trlo)

● Try:
– trloctrl --addr=2 --print-config

– trloctrl --addr=2 --mux-src-scalers

http://fy.chalmers.se/~f96hajo/trloii/

Nustar Readout Library - nurdlib

http://webdocs.gsi.de/~land/nurdlib/

Nustar Readout Library - nurdlib

● The missing piece in MBS: readout code -> Nurdlib fills the gap!
● Main Features:

– Text-based configuration of crate layout and readout modules
– Sane default configurations included
– Independent of platform or DAQ environment
– Online data integrity checking
– Multi-event support
– Single cycle and block transfer (DMA) modes where supported
– Strict ansi C compliance and harsh GCC flags

http://webdocs.gsi.de/~land/nurdlib/

Nustar Readout Library - nurdlib

● Supported hardware:
– CAEN V775/785/792/830/895/965/1190/1290
– Mesytec MADC32/MTDC32/MQDC32
– GSI SAM4&5/TACQUILA/VULOM/VETAR/VFTX2/VUPROM
– Struck SIS3316

● ~700 lines of code per module

http://webdocs.gsi.de/~land/nurdlib/

Nustar Readout Library - nurdlib

● Example config file:

http://webdocs.gsi.de/~land/nurdlib/

CRATE("XBL") {
acvt = true
GSI_VULOM(0x02000000) {

trlo2_master = true
trlo2_timerlatcher = true
trlo2_timestamper = true

}
MESYTEC_MADC32(0x00700000) {}
MESYTEC_MADC32(0x00710000) {}
MESYTEC_MADC32(0x00720000) {}
MESYTEC_MADC32(0x00730000) {}
GSI_VUPROM(0x05000000) {}

}

CRATE("TOF") {
 GSI_VULOM(0x02000000) {}
 BARRIER
 GSI_VFTX2(32, 0x09000000) {
 channel_invert = 0xaaaa
 }
 GSI_VFTX2(32, 0x0a000000) {
 channel_invert = 0xaaaa
 }
 GSI_VFTX2(32, 0x0b000000) {
 channel_invert = 0xaaaa
 }
}

Nustar Readout Library - nurdlib

● Nurdlib and MBS -> r3bfuser
– Needs ‚glue code‘ to attach nurdlib to the MBS functions in the
f_user.c file

– r3bfuser aims to be generic glue code for MBS and nurdlib
– Simplified:

● f_user_get_virt_ptr() does nothing
● f_user_init() calls nurdlib_setup(„main.cfg“)
● f_user_readout() calls crate_readout()

http://webdocs.gsi.de/~land/nurdlib/

Nustar Readout Library - nurdlib

● Directory structure:
– rio4-1:

● setup.usf – User setup file
● start.scom – Startup script
● stop.scom – Shutdown script
● vulom.trlo – TRLOII setup file
● main.cfg – nurdlib setup file

– nurdlib

– trloii

– r3bfuser

Unpack and check every single bit - ucesb

http://fy.chalmers.se/~f96hajo/ucesb/

Unpack and check every single bit - ucesb

● ucesb is a generic unpacker generator
– Based on a specification file an experiment specific data unpacker is

generated
– Transforms LMD (and other) event-wise packed data into ROOT files (or

PAW ntuples)
– Physical (hardware) channels are mapped to logical (detector) channels,

support for multi-hit and multi-event data
– Calibration can be applied in the same process

http://fy.chalmers.se/~f96hajo/ucesb/

Read stream output from rio4-1 and write to test.root file
ROOT file contains a tree ‚h101‘ with mapped detector
branches
> ./ucesb stream://rio4-1 --ntuple=RAW,test.root

Unpack and check every single bit - ucesb

● ucesb is a data stream multiplexer
– Reads from MBS stream or transport or event server output,

from an LMD file, from the output of another ucesb instance
– Filters based on event and subevent type
– Writes MBS-like stream output, writes to file or sends data in a

fixed structure over network

http://fy.chalmers.se/~f96hajo/ucesb/

Read stream output from rio4-1 and serve only events with
type 88 it on the network on port 8000
> ./ucesb stream://rio4-1 --server=stream:8000,incl=type=88

Unpack and check every single bit - ucesb

● ucesb is a time sorter and event stitcher
– Sorts events from several input streams into a single output

stream based on a timestamp (white rabbit or titris style)
– Stitches events from different subsystems together with

matching timestamps (closer than N timestamp units)

http://fy.chalmers.se/~f96hajo/ucesb/

Read two streams and combine, then do time-stitching
> ucesb --stream=rio4-1 --stream=rio4-2 --merge=wr,2 \
 | ucesb --file=- --time-stitch=40 --ntuple=RAW,test.root

Unpack and check every single bit - ucesb

● ucesb is a DAQ debugging tool
– Gives instant access to LMD event and subevent data structure
– Shows where in the data stream the unpacking failed
– Shows ascii histograms of detector channels

● ucesb can be extended by user functions

http://fy.chalmers.se/~f96hajo/ucesb/

ucesb is your swiss army knife for
event sorting and data handling

ucesb and TRLOII

● TRLOII experiment specific scaler display (via ucesb)

http://fy.chalmers.se/~f96hajo/trloii/

Spill: 25503 TrigType: 1 Mon Sep 23 06:45:49 2013

 # ID Raw # ID B. DT A. DT A. Red FC effDT Red 2^n
 1: LaBrOR L 14236 # 1:Singl LaBr H 246 228 228 100% 7.3% 1.0 0
 2: LaBrOR H 246 # 2:Singl HPGe H 207 183 183 100% 11.6% 1.0 0
 3: HPGeOR L 5907 # 3:Coinc L-L 134 116 116 100% 13.4% 1.0 0
 4: HPGeOR H 207 # 4:Coinc L-H 8 8 8 100% 0.0% 1.0 0
 5: LaBr M L 69 # 5:LaBr M H 7 6 6 100% 14.3% 1.0 0
 6: LaBr M H 3 # 6:HPGe M H 5 5 5 100% 0.0% 1.0 0
 7: HPGe M L 19 # 7:Zero Degree 0 0 0 - - -
 8: HPGe M H 2 # 8:Pulser 101643 96531 94 100% 5.0%1026.9 10
 9: Paddle 4744 # 9:Singl LaBr L 14236 12574 98 100% 11.7% 128.3 7
10: HPGe0deg 0 # 10:Singl HPGe L 5907 5170 80 100% 12.5% 64.6 6
11: RF 5652345 # 11:Coinc H-L 2 2 2 100% 0.0% 1.0 0
12: Pulser 101643 # 12: -- 0 0 0 - - -
13: CRM 1 9711 # 13: -- 0 0 0 - - -
14: CRM 2 6065 # 14: -- 0 0 0 - - -
15: CRM 3 4830 # 15: -- 0 0 0 - - -
16: CRM 4 18690 # 16: -- 0 0 0 - - -

Today
● Introduction – What is a DAQ and what is MBS
● SBS – A simple MBS

– hardware (RIO, TRIVA, VULOM, TRIXOR, ...)
– m_read_meb (f_user.c)

● MBS – Multiple crates
● Use cases:

– MBS at Duke University for Gamma3

– MBS at the R3B setup at GSI

● TRLOII – A flexible trigger logic
● nurdlib – The nustar readout library
● ucesb – Unpack and check every single bit (the sorting code)
● Outlook

Outlook - What‘s cooking...

● Currently gearing up for 2016 beam time at GSI
● Investigating a successor of MBS with

– same f_user.c interface, same MBS data format
– faster startup time
– higher flexibility and better fault handling in multi-crate setups
– auto-connect of temporarily missing or new crates
– tightly coupled to ucesb for data transport

● Triggerbus handling from TRIMI, to fully replace TRIVA7 in all instances
● Improved version of VULOM for Nustar signal exchange points. To act as

generic signal relay station

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

