Decay of the PDR in ¹⁴⁰Ce. First results ^{15.01.2014} from the γ³ coincidence setup at HIγS

Bastian Löher

EMM

B.Löher^{1,2}, V.Derya³, T.Aumann⁵, J.Beller⁵, N.Cooper⁶, M.Duchêne⁵, J.Endres³, E.Fiori^{1,2}, P.Humby⁶, J.Isaak^{1,2}, J.Kelley⁴, M.Knörzer⁵, N.Pietralla⁵, C.Romig⁵, D.Savran^{1,2}, M.Scheck⁵, H.Scheit⁵, J.Silva^{1,2}, A.Tonchev⁷, W.Tornow⁴, H.Weller⁴, V.Werner⁶ and A.Zilges³

¹ExtreMe Matter Institute EMMI and Research Division,

GSI Helmholtzzentrum, Darmstadt

²Frankfurt Institute for Advanced Studies FIAS, Frankfurt

³Institut für Kernphysik, Universität zu Köln, Köln

⁴Department of Physics, Duke University, Durham, NC, USA

⁵Institut für Kernphysik, Technische Universität Darmstadt

⁶WNSL, Yale University, USA

⁷Lawrence Livermore National Lab, Livermore, CA, USA

ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung

Frankfurt Institute for Advanced Studies FIAS

Motivation

New experimental possibilities at γ^3 to study decay patterns

- Study of the Pygmy Dipole Resonance
- Deeper Investigation of the Scissors Mode
- Two phonon excitations in light and heavy nuclei

Motivation

New experimental possibilities at γ^3 to study decay patterns

- Study of the Pygmy Dipole Resonance
- Deeper Investigation of the Scissors Mode
- Two phonon excitations in light and heavy nuclei

Dipole Photoresponse of (spherical) nuclei

- M1 Scissor's Mode
- GDR: Oscillation of Neutrons vs. Protons
- PDR: Oscillation of Neutron skin vs. Core
 Bastian Löher | ExtreMe Matter Institute EMMI

Motivation

Dipole Photoresponse of (spherical) nuclei

- M1 Scissor's Mode
- GDR: Oscillation of Neutrons vs. Protons
- PDR: Oscillation of Neutron skin vs. Core
 Bastian Löher | ExtreMe Matter Institute EMMI

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Nuclear Resonance Fluorescence (NRF) $X(\gamma,\gamma')X$

Experimental Method S_N

- Γ_0 Γ_0 0^{+}_{1}
- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: $(\Gamma_0 \gg \Gamma_i)$

Usually in NRF assume $\Gamma_0/\Gamma \approx 1$ \rightarrow This may not be the case for the

 $\sum \Gamma_i$!

Experimental Method S_N Γ_0 Γ_0

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: $(\Gamma_0 \gg \Gamma_i)$

To determine Decay Pattern, Γ_i need to be determined \rightarrow Challenge: Measure small branching ratios $b_0 = \frac{\mathbf{I}_i}{\Gamma}$

 0^{+}_{1}

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Use:

Selectivity of NRF reaction → Mostly J=1 states

Bastian Löher | ExtreMe Matter Institute EMMI

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Use:

• Selectivity of NRF reaction and mono-energetic beam \rightarrow Prepare nucleus in well-defined excitation mode

Bastian Löher | ExtreMe Matter Institute EMMI

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)
- Select low energy decay

Combine:

- Selectivity of NRF reaction and mono-energetic beam
- Sensitivity of γ - γ coincidence method

Bastian Löher | ExtreMe Matter Institute EMMI

15.01.2014 The γ^3 setup Det1 Γ_0 Γ_0 2^{+}_{2} Beam Det2 energy 0^{+}_{1}

Detect two photons in coincidence
 → High photo peak efficiency needed

15.01.2014 The y³ setup High level density 1 \rightarrow Use high resolution HPGe **HPGe** Γ_0 Γ_0 Γ_{i} 2^{+}_{2} $0^+_2 \\ 2^+_1$ Beam Level Density energy 0_{1}^{+}

EN

Combine HPGe with LaBr detectors

The y³ setup

EN

B. Löher et al., Nucl. Instruments Methods Phys. Res. Sect. A 723, 136–142 (2013).

New detector array at $HI\gamma S$

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

The y³ setup

EN

B. Löher et al., Nucl. Instruments Methods Phys. Res. Sect. A 723, 136–142 (2013).

New detector array at $HI\gamma S$

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

B. Löher et al., Nucl. Instruments Methods Phys. A 686 (2012).

The y³ setup

- Total efficiency: 6% + 1.3% @ 1.3 MeV (LaBr+HPGe)

- Commissioning phase 2012 (³²S)
- Experimental Campaign 2012
- Experimental Campaign 2013

15.01.2014 **Setup Commissioning** 8.125 MeV 2+ 2.230 MeV

Detectors: 4x HPGe (60%) + 4x 3"x3" LaBr

• Target: ³²S @ 8.125 MeV beam energy

32S

• Beam on Target: 4 h

0+

- Commissioning phase 2012 (³²S)
- Experimental Campaign 2012
- Experimental Campaign 2013

Beam time 2012:

- 700 h of beam time in 5+1 weeks
- Investigated 7+3 nuclei:
- ¹²⁴Sn, ¹⁴⁰Ce, ⁷⁶Ge, ⁴⁰Ca, ¹⁵⁶Gd + ²⁴⁰Pu, ²³³U, ³²S

Beam time 2013:

- >700 h of beam time in 8 weeks
- Investigated 9+2 nuclei:
 - ¹²⁸Te, ^{152,156}Gd, ¹⁴⁰Ce, ^{92,94}Zr, ²⁰⁶Pb, ^{162,164}Dy + ¹¹B, ³²S

Goals:

• Parities, Decay of Scissors Mode and PDR, Measurement of the PSF, 2 phonon state

Beam time 2012:

- 700 h of beam time in 5+1 weeks
- Investigated 7+3 nuclei:
- ¹²⁴Sn, ¹⁴⁰Ce, ⁷⁶Ge, ⁴⁰Ca, ¹⁵⁶Gd + ²⁴⁰Pu, ²³³U, ³²S

Beam time 2013:

- >700 h of beam time in 8 weeks
- Investigated 9+2 nuclei:
 - ¹²⁸Te, ^{152,156}Gd, ¹⁴⁰Ce, ^{92,94}Zr, ²⁰⁶Pb, ^{162,164}Dy + ¹¹B, ³²S

Goals:

• Parities, Decay of Scissors Mode and PDR, Measurement of the PSF, 2 phonon state

Beam time 2012:

- 700 h of beam time in 5+1 weeks
- Investigated 7+3 nuclei:
- ¹²⁴Sn, ¹⁴⁰Ce, ⁷⁶Ge, ⁴⁰Ca, ¹⁵⁶Gd + ²⁴⁰Pu, ²³³U, ³²S

Beam time 2013:

- >700 h of beam time in 8 weeks
- Investigated 9+2 nuclei:
 - ¹²⁸Te, ^{152,156}Gd, ¹⁴⁰Ce, ^{92,94}Zr, ²⁰⁶Pb, ^{162,164}Dy + ¹¹B, ³²S

Goals:

• Parities, Decay of Scissors Mode and PDR, Measurement of the PSF, 2 phonon state

Experiments

Systematics of the PDR:

- Concentrated around 5-7 MeV
- Strong fragmentation
- Summed strength may scale with N/Z

A. Zilges et al., PLB 542, 43 (2002).
D. Savran et al., Prog. Part. Nucl. Phys. 70, (2013) 210-245

Experiments

Systematics of the PDR:

- Concentrated around 5-7 MeV
- Strong fragmentation
- Summed strength may scale with N/Z

A. Zilges et al., PLB 542, 43 (2002).
D. Savran et al., Prog. Part. Nucl. Phys. 70, (2013) 210-245

¹⁴⁰Ce (γ,γ')

Splitting of PDR observed with different probes \rightarrow Decay pattern may yield additional information

Bastian Löher | ExtreMe Matter Institute EMMI

EN

- 11 Beam energies (+2 in 2013)
- ~100 h beam on target
- Target: 2.35 g enriched ¹⁴⁰CeO₂

Splitting of PDR observed with different probes \rightarrow Decay pattern may yield additional information

¹⁴⁰Ce (γ,γ')

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

Experimental data yields two matrices:

HPGE1EC:LABR1EC {HPGE1EC>=100 && LABR1EC>=390 && HPGE1T>0 && LABR1T>0} LABR1EC:LABR2EC {LABR1EC>=390 && LABR2EC>=100 && LABR1T>0 && LABR2T>0} sum2d sum2d 5000 Entries 2.252807e+07 Entries 1.470472e+07 5.6 MeV 5000 5.6 MeV 1437 Mean 1350 Mean 4500 Mean 1251 Mean 1415 4500 RMS x 516.1 RMS > 583.9 RMS v 517.1 RMS \ 553.2 4000 4000 HPGe 3500 3500 _aBr 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 1500 2000 2500 3000 3500 4000 1000 2000 2500 3000 3500 4500 5000 1000 4500 5000 1500 4000 LaBr LaBr Ex Possible analyses: ~5.6 MeV • Gate on $2^+_1 \rightarrow 0^+$ in LaBr: 1) HPGe spectra (high resolution \rightarrow single states) ~4000 keV Γ_0 Γ_0 2) LaBr spectra (better efficiency \rightarrow averaged) Beam energy 2^{+}_{1} 1596 keV 0^{+}_{1} Intensity ¹⁴⁰Ce

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ')

EMM

Bastian Löher | ExtreMe Matter Institute EMMI

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

E

Bastian Löher | ExtreMe Matter Institute EMMI

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

Average branching ratio to first excited states

¹⁴⁰Ce (γ,γ')

- Determine branching ratios of single states (Sensitivity 1-5%)
- Average branching ratios (Sensitivity ~1%)
- Upper limits for unobserved branchings

Towards ELI-NP

Towards ELI-NP

- ELI-NP (Extreme Light Infrastructure Nuclear Physics)
- New high intensity light source in Europe
- Uses LCBS to produce high Energy γ beams

Towards ELI-NP

Towards ELI-NP

Towards ELI-NP

What do we learn from γ^3 for the upcoming ELI?

Flux on target: 10⁵ / (s keV) Resolution: ~ 3% Energy: 1 – 100 MeV

Bastian Löher | ExtreMe Matter Institute EMMI

extreme light infrastructure

Towards ELI-NP What do we learn from γ^3 for the upcoming ELI? Experimental setup /Detectors \rightarrow Similar to HIyS Electronics / DAQ -> Digital Readout / Sampling Background → less background Physics \rightarrow Anything from HI_yS s keV) Flux on target: 10 Flux on target: 105 keV) Resolution: $\sim 3\%$ Resolution: < 0.5Energy: < 20 MeV Energy: 1 – 100 MeV extreme light infrastructure

53

15.01.2014

Summary

- γ-γ coincidence method to increase sensitivity for weak transitions
- The new γ³ setup at HIγS
- Commissioning with ³²S
- PDR in ¹⁴⁰Ce
- Analysis of coincidences
- Discrete and Average branching ratio, Are in agreement with QPM
- Future project: ELI-NP

PDR

Collaboration

• EMMI/GSI

- B.Löher, E.Fiori, J.Isaak, D.Savran, J.Silva
- TU Darmstadt
 - T.Aumann, J.Beller, M.Duchêne, M.Knörzer, N.Pietralla, M.Scheck, H.Scheit
- Universität zu Köln (Cologne)
 - V.Derya, J.Endres, A.Zilges
- ΗΙγS (Duke University)
 - M.Bhike, M.Gooden, J.Kelley, A.Tonchev, W.Tornow, H.Weller
- Yale University
 - N.Cooper, P.Humby, V.Werner