Photon induced γ-γ coincidence ^{28.05.2013} **experiments at the γ³-setup at HIyS**

Bastian Löher

EMM

B.Löher^{1,2}, V.Derya³, T.Aumann⁵, J.Beller⁵, N.Cooper⁶, M.Duchêne⁵, J.Endres³, E.Fiori^{1,2}, P.Humby⁶, J.Isaak^{1,2}, J.Kelley⁴, M.Knörzer⁵, N.Pietralla⁵, C.Romig⁵, D.Savran^{1,2}, M.Scheck⁵, H.Scheit⁵, J.Silva^{1,2}, A.Tonchev⁷, W.Tornow⁴, H.Weller⁴, V.Werner⁶ and A.Zilges³

¹ExtreMe Matter Institute EMMI and Research Division,

GSI Helmholtzzentrum, Darmstadt

²Frankfurt Institute for Advanced Studies FIAS, Frankfurt

³Institut für Kernphysik, Universität zu Köln, Köln

⁴Department of Physics, Duke University, Durham, NC, USA

⁵Institut für Kernphysik, Technische Universität Darmstadt

⁶WNSL, Yale University, USA

⁷Lawrence Livermore National Lab, Livermore, CA, USA

ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung

Frankfurt Institute for Advanced Studies FIAS

Motivation

New experimental possibilities at γ^3 to study decay patterns

- Study of the Pygmy Dipole Resonance
- Deeper Investigation of the Scissors Mode
- Two phonon excitations in light and heavy nuclei

Motivation

New experimental possibilities at γ^3 to study decay patterns

- Study of the Pygmy Dipole Resonance
- Deeper Investigation of the Scissors Mode
- Two phonon excitations in light and heavy nuclei

Photoresponse of (spherical) nuclei

• GDR: Oscillation of Neutrons vs. Protons

- GDR: Oscillation of Neutrons vs. Protons
- PDR: Oscillation of Neutron skin vs. Core

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Nuclear Resonance Fluorescence

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Usually in NRF assume $\Gamma_0 / \Gamma \approx 1$ \rightarrow This may not be the case for the $\sum_i \Gamma_i !$

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

To know the decay pattern, Γ_i need to be determined \rightarrow Challenge: Measure small branching ratios

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Use:

• Selectivity of NRF reaction \rightarrow Mostly J=1 states

Bastian Löher | ExtreMe Matter Institute EMMI

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)

Use:

Selectivity of NRF reaction and mono-energetic beam
 → Prepare nucleus in well-defined energy region

Bastian Löher | ExtreMe Matter Institute EMMI

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)
- Select low energy decay

Combine:

- Selectivity of NRF reaction and mono-energetic beam
- Sensitivity of γ - γ coincidence method

Bastian Löher | ExtreMe Matter Institute EMMI

The y³ setup

- Decay "elastic" (Γ_0) or "inelastic" (Γ_i)
- Elastic channel dominant: (Γ₀ » Γ_i)
- Select low energy decay

Detect two photons in coincidence
 → High photo peak efficiency needed

The y³ setup

High level density \rightarrow Use high resolution HPGe

Combine HPGe with LaBr detectors

The y³ setup

F

New detector array at $HI\gamma S$

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

B. Löher *et al.*, Nucl. Instr. Meth. A (2013), accepted manuscript

The y³ setup

F

New detector array at $HI\gamma S$

- 4 high resolution HPGe detectors
- 7 high efficiency LaBr detectors

B. Löher *et al.*, Nucl. Instr. Meth. A (2013), accepted manuscript

New detector array at HIγS

Total efficiency: 6% + 1.3% @ 1.3 MeV (LaBr+HPGe)

EMMI Setup Commissioning 28.05.20131* 8.125 MeV $\Gamma_0 = 14 \%$ 5895

Full setup with 4x HPGe (60%) + 4x 3"x3" LaBr

2.230 MeV

• Target: ³²S @ 8.125 MeV beam energy

32S

Beam on Target: Only 4 h

2+

0+

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ') EN D. Savran et al., Phys. Rev. Lett. 97, 172502 (2006) 0.5¹⁴⁰Ce($\alpha, \alpha' \gamma$) [18/qu] 0.3 0.2 0.2 0.1 **Experiment at HI** γ S: 5 days of beamtime ٠ 11 Beam energies 0.0 ~100 h beam on target $B(E1) [10^{-3} e^{2} fm^{2}]$ 5 • Target: 2.35 g enriched ¹⁴⁰CeO₂ 10 15 20 $^{140}\mathrm{Ce}(\gamma,\gamma')$ 25 30 4000 5000 6000 7000 8000 Energy [keV]

Splitting of PDR observed with different probes \rightarrow Decay pattern may yield additional information

¹⁴⁰Ce (γ,γ')

Splitting of PDR observed with different probes \rightarrow Decay pattern may yield additional information

HPGE1EC:LABR1EC {HPGE1EC>=100 && LABR1EC>=390 && HPGE1T>0 && LABR1T>0} LABR1EC:LABR2EC {LABR1EC>=390 && LABR2EC>=100 && LABR1T>0 && LABR2T>0} sum2d sum2d 5000 Entries 1.470472e+07 Entries 2.252807e+07 5.6 MeV 5000 5.6 MeV Mean 1437 1350 Mean > 4500 Mean 1251 Mean y 1415 4500 RMS x 516.1 RMS x 583.9 RMS y RMS y 517.1 553.2 4000 4000 HPGe 3500 3500 LaBr 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 1.1.4 2000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2500 3000 3500 4000 4500 5000 1000 LaBr LaBr Ex 1 ~5.6 MeV ~4000 keV Γ_0 Γ_0 Γ. Beam energy 2^{+}_{1} 1596 keV -0^+_1 Intensity ¹⁴⁰Ce

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

HPGE1EC:LABR1EC (HPGE1EC>=100 && LABR1EC>=390 && HPGE1T>0 && LABR1T>0) LABR1EC:LABR2EC {LABR1EC>=390 && LABR2EC>=100 && LABR1T>0 && LABR2T>0} sum2d sum2d 5000 Entries 2.252807e+07 Entries 1.470472e+07 5.6 MeV 5000 5.6 MeV 1437 Mean 1350 Mean > 4500 Mean 1251 Mean 1415 4500 RMS x 516.1 RMS x 583.9 RMS v RMS v 517.1 553.2 4000 4000 HPGe 3500 3500 LaBr 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 2000 1500 2000 2500 3000 3500 4000 1000 1500 2500 3000 3500 4000 4500 5000 1000 4500 5000 LaBr LaBr Ex 3 possible analyses: ~5.6 MeV • Gate on $2^+_1 \rightarrow 0^+$ in LaBr: 1) HPGe spectra (high resolution) ~4000 keV Γ_0 Γ_0 Γ. Beam energy 2^{+}_{1} 1596 keV 0^{+}_{1} Intensity ¹⁴⁰Ce

Experimental data yields two matrices:

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ')

EMMI

Bastian Löher | ExtreMe Matter Institute EMMI

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (y,y')

EMM

Bastian Löher | ExtreMe Matter Institute EMMI

Bastian Löher | ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

E

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ')

¹⁴⁰Ce (γ,γ')

Gate on HPGe \rightarrow LaBr spectra

¹⁴⁰Ce (γ,γ')

Determination of branching via low-lying states

¹⁴⁰Ce (γ,γ')

Determination of branching via low-lying states

¹⁴⁰Ce (γ,γ')

Determination of branching via low-lying states

Problem: Population of state not determined

¹⁴⁰Ce (γ,γ')

Determination of branching via low-lying states

Solution: Use coincidence condition on high energy transitions \rightarrow Restrict to narrow energy band

ExtreMe Matter Institute EMMI

¹⁴⁰Ce (γ,γ')

PSF determination from decays to the first 2⁺ state

Outlook

- Analysis of ¹⁴⁰Ce data ongoing
- Next γ³ beam time starting in August 2013
 - PDR in ²⁰⁶Pb
 - Scissors Mode in ^{162,164}Dy

• Photon strength function in ¹²⁸Te

EMMI/GSI

• B.Löher, E.Fiori, J.Isaak, D.Savran, J.Silva

TU Darmstadt

- T.Aumann, J.Beller, M.Duchêne, M.Knörzer, N.Pietralla, M.Scheck, H.Scheit
- Universität zu Köln (Cologne)
 - V.Derya, J.Endres, A.Zilges
- HIγS (Duke University)
 - M.Bhike, M.Gooden, J.Kelley, A.Tonchev, W.Tornow, H.Weller

Yale University

• N.Cooper, P.Humby, V.Werner