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1 Introduction

X-ray scattering is well-tried for analysing an unknown substance. The method of Debye-
Scherrer was developed by Peter Debye and Paul Scherrer in 1916. The experiment of Debye
and Scherrer is based on a round can. In the middle of this can there is a holder for the
substance which has to be analysed. A film, which is fixed on the side of the can, records the
interference-structure. The Debye-Scherrer method is different from other methods (as for
example the Laue method) in three aspects. It uses monochromatic light, a rotating sample
and also a pulverized polycrystalline sample as opposed to a monocrystal.

2 Theoretical Background

2.1 X-Ray Radiation

X-rays are electromagnetic radiation in a wavelength-range of 14 = 10~ m. It was discov-
ered by Wilhelm Conrad Rontgen in 1896.

2.1.1 X-Ray Sources

X-rays can be produced by two different ways. The first one is to use an x-ray tube. It
contains a cathode and an anticathode. The electrons are accelerated towards the anticathode
by a high voltage (ca. 50 kV). In the anode the electrons are decelerated by the electrical
field of the nuclei. In this manner a photon with the wavelength corresponding to the lost
energy is created. The radiation which is generated in this process is called bremsstrahlung.

The smallest possible wavelength \.,;;, = :—5 of the emitted radiation is defined by the

tube accelerating voltage U. In our case the minimum wavelength is \;, ~ 1.24A. The
accelerated electrons can also eject other electrons from the atom. That way there are gaps
in a shell of a given energy. This condition is not stable, so an electron of a higher shell and
a smaller energy drops to fill the free place. The excessive energy is emitted as a photon.
These x-rays are called the characteristic spectrum. It is composed of sharp lines, because
the energy differences between the atomic shells are fixed. For example, the line with greatest
intensity is called K. It is the line which is appropriate to the energy difference between the
L shell and the K shell (see fig. 1 for reference). The efficiency of X-Ray tubes is only about
1% and thus alot of excess heat is produced which has to be cooled so that the anode does
not melt.

The second way to produce x-rays is within an electron synchrotron. The radiation is
emitted by the circling electron because a constant force accelerates the electron towards
the center of the synchrotron. Synchrotron radiation has a continuous spectrum and high
intensity.
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Figure 1: Schematic drawing of the atomic shell model with K and L lines of the characteristic
radiation.

2.1.2 Bragg's Law

We need the Bragg equation to determine the size of a cell in the atomic lattice. Therefore

we need the relation: a

= ®
But first we need to deduce the Bragg equation: If we have a crystal with the lattice width
d and monochromatic radiation which will be reflected on the crystal levels, then the angle
of the incoming and the reflected rediation is the same. But between the crystal levels there
is a distance. If we look only at the situation of constructive interference, we know that the
distance between two partial beams have to be n- A (with n =0,1,...). If we look at figure 2
we see, that the way difference between a partial beam, which is reflected at the first crystal
level and one reflected at the second crystal level, is 2d sin §. These two pieces of information
give us the Bragg equation:
2dsinf =n -\ (2)

With equation (1) we get:

A
ing = —ny/h2+ k2 + 12
sin 5" + k2 + (3)

And thus:

nv h? + k2 + (2 (4)

“= 2sin 6



Figure 2: This figure shows the beams of light in Bragg reflexion. Constructive interference
only happens when the Bragg law is fulfilled.

2.1.3 Monochromatisation

The Debye-Scherrer experiment needs a monochromatic beam. There are two ways to
monochromatise X-ray radiation. The first one is to use an absorption filter, which is rather
difficult to set up. The balance between the actual scattered intensity that arrives at the
detector and the amount of monochromatisation is hard to find. It is very important that
enough X-rays are scattered so that the measurements can be done within a reasonable time
frame. To achieve a sufficient scattered intensity the thicknesses of the filters, the crystals
and the sample must be well balanced. In this setup we only want to use the K-line, because
it is the one with the highest intensity and also corresponds to the interatomic distances in
a crystal. The filter material we use is nickel with the important absorption edge at 1.49A.
The intensity of photons traversing matter is given by:

& (5)

Y pida (6)

I = Ipe ™™ with — pz = —% - px (7)
I=1Ipe " (8)

With the empirical law for the mass absorption coefficient along a branch

B 23 78 (9)
P
we get a connection between the wavelength A, the atomic number Z and the absorption
of the scattered light. Because of this equation, we see that the absorption depends on the
wavelength and also on the atomic number and decays with greater photon energies. At the
absorption edges, the photon energy is high enough for the photoelectric effect to take place
and to elevate an electron from its shell to a higher orbit. The photon with the corresponding



energy is absorbed, as can be observed as a steep increase in the absorption coefficient. One
of these absorption edges for nickel overlaps with the K3-line of the copper anode, while the
K,-line’s energy is just below the absorption edge photons of this energy can not cause the
photo effect. This way the intensity of the Kg-line is greatly reduced in comparison to the
intensity of the K -line.

The second way to get a monochromatic beam, is scattering with a monochromatic crystal.
Because of Braggs law (eq. 2) only one wavelength will be reflected at a specified angle.

2.2 X-Ray Scattering

There are two models for describing x-ray scattering.

2.2.1 Compton Scattering

In the Compton theory the scattering between photons and electrons compares to a game
of billard. The photon and the electron are seen as hard balls. When the photon hits the
electron it transfers some of the motion energy to the electron. So the wavelength of the
photon changes dependent on the angle:

AN = (1 —cos ) (10)

MeC

This type of scattering is inelastic and incoherent, so there is no relation in phase between the
incoming and the scattered photon. This model becomes very important in the MeV regime
compared to Thomson scattering. In our case (keV) Compton scattering is not as important,
so it will only darken the background of the diffractogram.

2.2.2 Thomson Scattering

In Thomson scattering a photon will be absorbed when it interacts with an electron in an
atomic lattice. The electrical field of the photon puts the electrons into oscillation and like
an antenna the electron emits radiation. The emitted light can only be detected in special
directions, because the it is coherent and thus it shows interference patterns. Only at angles
with constructive interference the reflected light can be seen as peaks. The Bragg Law
follows directly from this consideration. Thomson scattering is an elastic scattering model
which is predominant in the keV regime. At these wavelenghts the nuclei provide a very
small inhomogeneity due to their size (fm-scale). Scattering by the nuclei can therefore be
neglected.

3 Preparational Topics

3.1 Structure Factors of bcc and fcc lattices

BCC The structure factor of the bcc lattice is same as the structure factor of an sc lattice

with a two atomic basis: (0,0,0) and (3,3,5). The structure factor of an sc lattice is 1, and



SO:

Sch — Ssc +62ﬂi(%+§+%) =1 + eﬂ'i(h-i-k—i-l) (11)
2 h+k+1
Shee = (h+k-+1) even 1)
0 (h+k+1) odd

This shows that we can only see the reflexes with even sums of h,k and I.

FCC This lattice can be described as four simple cubic lattices put inside each other with
base atoms at: (0,0,0), (0,3.2), (3.0.3), (3.2.0). The structure factor computes similar to
the above to:

Stee =1+ emilhtk) o milk+l) y omi(hetl) (13)
St = {4 h,k and | either even or odd (14)
f
0 else

Here only reflexes like (3,1,1) or (2,2,4) are allowed, but others like (0,1,1) or (3,2,1) are
forbidden.

3.2 Monochromatic beams with a monochromator crystal

You can create monochromatic light with a crystal using the Bragg law. In a setup with a
fixed angle 6 and a broad spectrum of light with the wavelengths A = A\ the Bragg law will
only be fulfilled for one special A. The partial beam of this special wavelength is scattered on
the crystal and can be detected at the scattering angle. The rest of the light is reflected in
other directions.

3.3 Post-Scatter Filtering

Several effects like fluorescence in the crystal or momentum transfer between photons and
phonons can alter the wavelength of the incident light in the scattering process. In case the
beam passes a monochromator before scattering, the quality of the beam decreases due to
these effects. Monochromation after scattering suppresses this effect.

3.4 Atomic form factors of K and CI

The atomic form factor is the fourier transform of the electron distribution in the orbitals. If
the form factors of K and Cl in the KCI molecule are the same, then the electron distribution
must be similar. Potassium has one valence electron, while chlorine needs only one electron
to fill the valence orbital. In the ionic bond chlorine receives one electron from potassium
and thus the electron waveforms assume the same structure. This leads to very similar form
factors.

Zg+ +Zoi- = Zar (15)



3.5 Error of the lattice parameter

Using gaussian error propagation on equation (4) for lattice parameter a we get an error for
Aa:

a:$\/h2+k2+l2 (16)

2sinf
R a7
g—g - til%" (18)
Fa ~ tano (19)

We see that at large angles § — 3 the error vanishes, while at small angles & — 0 the
error becomes infinity. This shows that large angles should be used to calculate a.

3.6 Error of the grain size
Using the same method on the Scherrer equation:

0.89 -\
B = cosf - A20 (20)

we get from the derivative of B in respect to 6

dB 0.89)\ .
d6  2cos?60 - A20 sinf (21)
B B
2—0 =5 tan 6 (22)
% = %0 tan 6 (23)

We see that at large angles § — 7 the error grows to infinity, and at small angles § — 0
the error vanishes this time. Consequently the grain size can best be determined at small
angles.

4 Experiment

The experiment took place in a closed system X-Ray scattering setup layed out after Bragg-
Brentano. The wavelength of the installed X-Ray source is A = 1.541838A. This wavelength
results from averaging over the wavelengths of the K,, and the K, line from the copper
anode. The relative intensity of the lines is about 2:1, so the K, -line has double weight. All
lines of higher order have progressively less intensity, so their impact on the final wavelength
can be neglected. Using the data from Table 1 in the instruction sheet (AK,, = 1.5405A
and AK,, = 1.5443A) we obtain A = % MK, + % MK, = 1.541838A. The two different
wavelengths can not be resolved at small angles, but at greater angles two peaks are visible.



4.1 Preparing the sample

We prepared the sample consisting of silicon and an unknown substance by grinding them up
in a mortar. Then we applied the ground mixture to the sample holder and fit it into the
setup. It is important that the surface of the sample is flat and parallel to the edges of the
holder in order to minimize side effects.

4.2 Lattice parameter and type via calibration sample (S7)

Using the well known properties of silicon we can calibrate the measured diffractogram and
pinpoint the exact angles of the unknown substance. This enables us to determine its lattice
parameter and the lattice type.

At first we calculated the difference A20g; of seven different silicon peaks in the diffrac-
togram compared to their literature values.

(h,k,l) A2952 in ° 2952‘ in °
1,11 0.031 27.276
2,2,0 0.053 31.631
3,11 0.064 42.186
2,2,2 0.069 45.373
4,0,0 0.084 53.689
331 0.096 75.227

4,2,2 0.118 83.940
Using the plot of A26g; over 20g; (fig 3) we determined the experimental relative error
A20
(W)System'

A26 115 —30)-10%  85.5-107°

Steepness: — = ( ) = =145-1073 (24)
20 ) system 90 — 31.5 58.5

The steepness of the graph in fig 3 gives us the relative error of the system. This relative

error is the same for the unknown substance, so we can correct the values for 26.

A20
(29)5’2 : <W> - (A29)Unknoum (25)
System

This produces the following values. The table also shows sin?(6), (R24k2+12) and (h, k,1)
which help calculating the lattice parameter a.

(A20) Unemown | Sin2(0) | (B2 + K2+ 12) | (h, k, 1)
0.040 0.0556 3 (1,1,1)
0.046 0.0743 4 (2,0,0)
0.061 0.1295 7 —
0.066 0.1488 8 (2,2,0)
0.078 0.2039 11 (3,1,1)
0.199 0.3725 20 (4,2,0)
0.122 0.4472 24 (4,2,2)
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Figure 3: Relative system error is gained from the steepness of the red line. Values in degrees.

We knew that the current lattice type forbids scattering on planes with mixed (h, k,1), so
the lowest possible combination was (1,1,1). We calculated the other values for (h? 4 k% +-1?)
using this iteration:

sin?(6) 41
sin?(6),,
The value for a and its error were derived from a least squares fit with gnuplot. sin(f) was

plotted over 5v/h2 + k% + I2 (see fig. 4). The steepness m (see equ. (27)) of the red graph
gives us the inverse lattice parameter % The error computes as follows: Aa = |#‘

sin(0) = m%\/ h? 4+ k2 + 12 (27)

a[A] | Aa[A]
5.65 | 4-1072

(W + k2 + 1)1 = (h? + K2 +1%), (26)

The literature value of a is 5.62779 and the unknown substance we analysed was NaCl
which is ordinary cooking salt. Its lattice type is sc.
4.3 Lattice parameter and type via A2/

In the next experiment we investigated anatase which is 790. We tried to calculate the lattice
parameters a and c of this substance comparing two peaks of a relative intensity greater than
20% with each other. With equation 28 we can calculate the parameters a and c.

10
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Figure 4: Plot of sin(6) over %\/h2 + k2 + 12 to find a and Aa. The errorbars have been

derived from sin <%) via gaussian error propagation.

N (R k22 n? k22
Asin?9 = = (—2+—2+—2> —(—2+—2+—2> (28)
4 a a ¢ large angle a a €” / small angle

As the large angle peak we chose the one with 15.62% intensity at an angle of 82.679°.
With the help of an excel spreadsheet we calculated the following data for anatase:

| 20 [] | (h, k1) | alA] | c[A] |
Large angle peak | 82.679 | (2,2,4)
Smaller angle peaks | 25.304 | (1,0,1) 3.7842 9.5084
37.819 | (0,0,4) 4.3101 10.8297
48.031 | (2,0,0) 3.7841 9.5079
53.915 | (1,0,5) 3.7850 9.5103
55.055 | (2,1,1) 3.7840 9.5077
62.698 | (2,0,4) 3.7847 3.5094
75.065 | (2,1,5) 3.7859 9.5127
Mean 3.86 £ 0.2 (5%) | 9.70 = 0.5 (5%)
\ Literature \ \ \ 3.7840 \ 9.5118 \

We can see that even without a calibration sample we can determine the lattice constants
to a precision of 5%. The structure of T%O5 is bcc.
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4.4 Grain size of a nano-crystalline sample

In this last part of our experiment we want to measure the grain size of the crystallites in our
sample. To do this we compare the full width at half maximum (FWHM) of the peaks in the
diffractogram of a nano-crystalline sample and of a sample with macroscopic grains. As a
sample we use platinum both times and do not change anything else in the setup. We know
that platinum has an fcc structure. This way the change in the FWHM results only from a
difference in grain size. We looked at two specific peaks and compared their widths:

260 [°] | FWHM macro [°] | FWHM nano [°] | A26 [°]
39.961 0.249 1.325 1.032
67.680 0.311 2.034 1.672

Using the Scherrer-formula

0.89 -\
B= cosf - A20 (29)

we gain values for B and the number N of unit cells per grain:

%Pl ] B | N
39.961 | 81.065 | 21
67.680 | 56.614 | 14

We can see that our values are not very precise and we only looked at two different peaks,
but we can gain a good estimate for the grain size with this simple method.

5 Concluding Questions

5.1 Shift in the K., peaks at large angles

The distance between the K1 and the Ko peaks are bigger at large angles than the distance
between the peaks at small angles, because of Bragg's law. If we have a look at the total
differential:

d\ = 2d cos 6d6 (30)
With AX = Ak, — Ak, We get:
AN = 2d cos 0AH (31)
Now we see that
Af o cos™1 0 (32)

Thus the peak splitting becomes more and more visible towards larger angles.

12



5.2 X-Ray Analysis of matter with high AZ

If we have a bond of elements with different atomic numbers, the structure factor is

F = fl Z e27ri(ur1 'h-‘rUrl 'k—i-wrl-l) + f2 Z e27ri(ur2-h+vr2-k+wr2-l) (33)

1 T2

The problem to detect reflexes of molecules with a high AZ lies in the atomic form factor
f (= amplitude of the scattered wave by one electron). For § = 0 we have f = Z and
with varying 6 f oc sin6 is valid for all the elements. So from highly different Z follow very
different form factors. It follows that the intensity scattered by heavy elements is larger as
the intensity scattered by light elements. The different intensities are hard to detect in the
diffractogram.

5.3 Forbidden reflexes

The intensity of Bragg reflexes is given by:

(34)

1 220
[(h7k7l):I0’F(h7kal)‘2p< T cos >

2sin? 6 - cos @

F(h k1) = 3, f - e2milhurthvetlor) is called structure factor. If the atomic numbers are
equal, we can pull the atomic form factor out of the sum

F(h,k,1) = Z £, - 2milhurtko+lw,) (35)
= F(h, k?, l) _ f . Z 627ri(hu7-+kvr+lw7-) (36)
= F(h,k,l) = f-S(h, k1) (37)

S(h,k,l) is called geometrical structure factor. If it is equal to zero there are forbidden
reflexes, even if the Bragg equation says that a reflex exists. Forbidden reflexes are not visible
in the diffractogram.

5.4 Analysing Cu samples with C'u anodes

You can analyse a copper sample with the x-ray radiation of a copper anode, because the
K1-line belongs to the energy difference between the K- and the L-shell. So the radiation can
only hit electrons out of the higher orbitals of a copper atom, because the energy is not high
enough to fully eject electrons from the innermost shells of the atom. The radiation which is
emitted (so called fluorescence-x-ray-radiation) can be identified in the diffractogram.

5.5 Grain size weight

The Scherrer equation reads:
0,89- A

A20 = B -cosf
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A20 is the widening of the Bragg reflexes, because of the limited grain size. B is the grain
size. In this case A26 is the full with at half maximum of the peaks (FHWM). Small values
for B (B < 1A) result in large values for the FHWM, whereas large values for B result in
small values for the FHWM. This means that small values for B must have a greater weight
in the average than larger values for B.

5.6 Consequences of inelastic scattering

The physical size which is responsible for this is the Debye-Waller factor. It describes the
intensity of the peaks in relation to the temperature:

I = Ioe—%|é\2<u2> (39)

The size (u?) is the root mean square of the deviation of the position of the atoms in the
lattice and G is a reciprocal lattice vektor. If the temperature increases, the atoms in the
lattice oszillate more and wu gets larger. We see that the intensity decreases, because the
argument of the exponential in the Debye-Waller factor is negative. Therefore the peaks
shrink with increasing temperature.

U does also depends on the elastic constants of our sample. There are two effects:

e The thermal agitation causes the planes to deviate from the mathematical planes used
by the Bragg law. The reinforcement of the scattered waves is not really perfect.
Therefore the intensity of the peaks is lower.

e Temperature causes diffuse scattering: the vibration of the atoms causes general coher-
ent scattering in all directions thus increasing the background of the diffractogramm.
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