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1 IntroductionX-ray scattering is well-tried for analysing an unknown substance. The method of Debye-Scherrer was developed by Peter Debye and Paul Scherrer in 1916. The experiment of Debyeand Scherrer is based on a round can. In the middle of this can there is a holder for thesubstance which has to be analysed. A �lm, which is �xed on the side of the can, records theinterference-structure. The Debye-Scherrer method is di�erent from other methods (as forexample the Laue method) in three aspects. It uses monochromatic light, a rotating sampleand also a pulverized polycrystalline sample as opposed to a monocrystal.2 Theoretical Background2.1 X-Ray RadiationX-rays are electromagnetic radiation in a wavelength-range of 1Å = 10−10m. It was discov-ered by Wilhelm Conrad Röntgen in 1896.2.1.1 X-Ray SourcesX-rays can be produced by two di�erent ways. The �rst one is to use an x-ray tube. Itcontains a cathode and an anticathode. The electrons are accelerated towards the anticathodeby a high voltage (ca. 50 kV). In the anode the electrons are decelerated by the electrical�eld of the nuclei. In this manner a photon with the wavelength corresponding to the lostenergy is created. The radiation which is generated in this process is called bremsstrahlung.The smallest possible wavelength λmin = hc
eU

of the emitted radiation is de�ned by thetube accelerating voltage U . In our case the minimum wavelength is λmin ≈ 1.24Å. Theaccelerated electrons can also eject other electrons from the atom. That way there are gapsin a shell of a given energy. This condition is not stable, so an electron of a higher shell anda smaller energy drops to �ll the free place. The excessive energy is emitted as a photon.These x-rays are called the characteristic spectrum. It is composed of sharp lines, becausethe energy di�erences between the atomic shells are �xed. For example, the line with greatestintensity is called Kα. It is the line which is appropriate to the energy di�erence between theL shell and the K shell (see �g. 1 for reference). The e�ciency of X-Ray tubes is only about1% and thus alot of excess heat is produced which has to be cooled so that the anode doesnot melt.The second way to produce x-rays is within an electron synchrotron. The radiation isemitted by the circling electron because a constant force accelerates the electron towardsthe center of the synchrotron. Synchrotron radiation has a continuous spectrum and highintensity.
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Figure 1: Schematic drawing of the atomic shell model with K and L lines of the characteristicradiation.2.1.2 Bragg's LawWe need the Bragg equation to determine the size of a cell in the atomic lattice. Thereforewe need the relation:

d =
a√

h2 + k2 + l2
(1)But �rst we need to deduce the Bragg equation: If we have a crystal with the lattice widthd and monochromatic radiation which will be re�ected on the crystal levels, then the angleof the incoming and the re�ected rediation is the same. But between the crystal levels thereis a distance. If we look only at the situation of constructive interference, we know that thedistance between two partial beams have to be n ·λ (with n = 0, 1, ...). If we look at �gure 2we see, that the way di�erence between a partial beam, which is re�ected at the �rst crystallevel and one re�ected at the second crystal level, is 2d sin θ. These two pieces of informationgive us the Bragg equation:

2d sin θ = n · λ (2)With equation (1) we get:
sin θ =

λ

2a
n
√

h2 + k2 + l2 (3)And thus:
a =

λ

2 sin θ
n
√

h2 + k2 + l2 (4)
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Figure 2: This �gure shows the beams of light in Bragg re�exion. Constructive interferenceonly happens when the Bragg law is ful�lled.2.1.3 MonochromatisationThe Debye-Scherrer experiment needs a monochromatic beam. There are two ways tomonochromatise X-ray radiation. The �rst one is to use an absorption �lter, which is ratherdi�cult to set up. The balance between the actual scattered intensity that arrives at thedetector and the amount of monochromatisation is hard to �nd. It is very important thatenough X-rays are scattered so that the measurements can be done within a reasonable timeframe. To achieve a su�cient scattered intensity the thicknesses of the �lters, the crystalsand the sample must be well balanced. In this setup we only want to use the Kα-line, becauseit is the one with the highest intensity and also corresponds to the interatomic distances ina crystal. The �lter material we use is nickel with the important absorption edge at 1.49Å.The intensity of photons traversing matter is given by:
dI

dx
= µI (5)

dI

I
µdx (6)

I = I0e
−µx with − µx = −µ

ρ
· ρx (7)

I = I0e
−µ

ρ
·ρx (8)With the empirical law for the mass absorption coe�cient along a branch

µ

ρ
∝ λ3 · Z3 (9)we get a connection between the wavelength λ, the atomic number Z and the absorptionof the scattered light. Because of this equation, we see that the absorption depends on thewavelength and also on the atomic number and decays with greater photon energies. At theabsorption edges, the photon energy is high enough for the photoelectric e�ect to take placeand to elevate an electron from its shell to a higher orbit. The photon with the corresponding5



energy is absorbed, as can be observed as a steep increase in the absorption coe�cient. Oneof these absorption edges for nickel overlaps with the Kβ-line of the copper anode, while the
Kα-line's energy is just below the absorption edge photons of this energy can not cause thephoto e�ect. This way the intensity of the Kβ-line is greatly reduced in comparison to theintensity of the Kα-line.The second way to get a monochromatic beam, is scattering with a monochromatic crystal.Because of Braggs law (eq. 2) only one wavelength will be re�ected at a speci�ed angle.2.2 X-Ray ScatteringThere are two models for describing x-ray scattering.2.2.1 Compton ScatteringIn the Compton theory the scattering between photons and electrons compares to a gameof billard. The photon and the electron are seen as hard balls. When the photon hits theelectron it transfers some of the motion energy to the electron. So the wavelength of thephoton changes dependent on the angle:

∆λ =
h

mec
(1 − cos ϕ) (10)This type of scattering is inelastic and incoherent, so there is no relation in phase between theincoming and the scattered photon. This model becomes very important in the MeV regimecompared to Thomson scattering. In our case (keV) Compton scattering is not as important,so it will only darken the background of the di�ractogram.2.2.2 Thomson ScatteringIn Thomson scattering a photon will be absorbed when it interacts with an electron in anatomic lattice. The electrical �eld of the photon puts the electrons into oscillation and likean antenna the electron emits radiation. The emitted light can only be detected in specialdirections, because the it is coherent and thus it shows interference patterns. Only at angleswith constructive interference the re�ected light can be seen as peaks. The Bragg Lawfollows directly from this consideration. Thomson scattering is an elastic scattering modelwhich is predominant in the keV regime. At these wavelenghts the nuclei provide a verysmall inhomogeneity due to their size (fm-scale). Scattering by the nuclei can therefore beneglected.3 Preparational Topics3.1 Structure Factors of bcc and fcc latticesBCC The structure factor of the bcc lattice is same as the structure factor of an sc latticewith a two atomic basis: (0,0,0) and (1

2 ,12 ,12). The structure factor of an sc lattice is 1, and6



so:
Sbcc = Ssc + e2πi(h

2
+ k

2
+ l

2) = 1 + eπi(h+k+l) (11)
Sbcc =

{

2 (h + k + l) even
0 (h + k + l) odd (12)This shows that we can only see the re�exes with even sums of h,k and l.FCC This lattice can be described as four simple cubic lattices put inside each other withbase atoms at: (0,0,0), (0,12 ,12), (1

2 ,0,12 ), (1
2 ,12 ,0). The structure factor computes similar tothe above to:

Sfcc = 1 + eπi(h+k) + eπi(k+l) + eπi(h+l) (13)
Sfcc =

{

4 h,k and l either even or odd
0 else (14)Here only re�exes like (3,1,1) or (2,2,4) are allowed, but others like (0,1,1) or (3,2,1) areforbidden.3.2 Monochromatic beams with a monochromator crystalYou can create monochromatic light with a crystal using the Bragg law. In a setup with a�xed angle θ and a broad spectrum of light with the wavelengths λ±∆λ the Bragg law willonly be ful�lled for one special λ. The partial beam of this special wavelength is scattered onthe crystal and can be detected at the scattering angle. The rest of the light is re�ected inother directions.3.3 Post-Scatter FilteringSeveral e�ects like �uorescence in the crystal or momentum transfer between photons andphonons can alter the wavelength of the incident light in the scattering process. In case thebeam passes a monochromator before scattering, the quality of the beam decreases due tothese e�ects. Monochromation after scattering suppresses this e�ect.3.4 Atomic form factors of K and ClThe atomic form factor is the fourier transform of the electron distribution in the orbitals. Ifthe form factors of K and Cl in the KCl molecule are the same, then the electron distributionmust be similar. Potassium has one valence electron, while chlorine needs only one electronto �ll the valence orbital. In the ionic bond chlorine receives one electron from potassiumand thus the electron waveforms assume the same structure. This leads to very similar formfactors.

ZK+ + ZCl− = ZAr (15)7



3.5 Error of the lattice parameterUsing gaussian error propagation on equation (4) for lattice parameter a we get an error for
∆a:

a =
λ

2 sin θ

√

h2 + k2 + l2 (16)
da

dθ
=

λ cos θ

2 sin2 θ

√

h2 + k2 + l2 (17)
da

dθ
=

a

tan θ
(18)

da

a
=

dθ

tan θ
(19)We see that at large angles θ → π

2 the error vanishes, while at small angles θ → 0 theerror becomes in�nity. This shows that large angles should be used to calculate a.3.6 Error of the grain sizeUsing the same method on the Scherrer equation:
B =

0.89 · λ
cos θ · ∆2θ

(20)we get from the derivative of B in respect to θ

dB

dθ
=

0.89λ

2 cos2 θ · ∆2θ
sin θ (21)

dB

dθ
=

B

2
tan θ (22)

dB

B
=

dθ

2
tan θ (23)We see that at large angles θ → π

2 the error grows to in�nity, and at small angles θ → 0the error vanishes this time. Consequently the grain size can best be determined at smallangles.4 ExperimentThe experiment took place in a closed system X-Ray scattering setup layed out after Bragg-Brentano. The wavelength of the installed X-Ray source is λ = 1.541838Å. This wavelengthresults from averaging over the wavelengths of the Kα1
and the Kα2

line from the copperanode. The relative intensity of the lines is about 2:1, so the Kα1
-line has double weight. Alllines of higher order have progressively less intensity, so their impact on the �nal wavelengthcan be neglected. Using the data from Table 1 in the instruction sheet (λKα1

= 1.5405Åand λKα2
= 1.5443Å) we obtain λ = 2

3 · λKα1
+ 1

3 · λKα2
= 1.541838Å. The two di�erentwavelengths can not be resolved at small angles, but at greater angles two peaks are visible.8



4.1 Preparing the sampleWe prepared the sample consisting of silicon and an unknown substance by grinding them upin a mortar. Then we applied the ground mixture to the sample holder and �t it into thesetup. It is important that the surface of the sample is �at and parallel to the edges of theholder in order to minimize side e�ects.4.2 Lattice parameter and type via calibration sample (Si)Using the well known properties of silicon we can calibrate the measured di�ractogram andpinpoint the exact angles of the unknown substance. This enables us to determine its latticeparameter and the lattice type.At �rst we calculated the di�erence ∆2θSi of seven di�erent silicon peaks in the di�rac-togram compared to their literature values.(h,k,l) ∆2θSi in ◦ 2θSi in ◦1,1,1 0.031 27.2762,2,0 0.053 31.6313,1,1 0.064 42.1862,2,2 0.069 45.3734,0,0 0.084 53.6893,3,1 0.096 75.2274,2,2 0.118 83.940Using the plot of ∆2θSi over 2θSi (�g 3) we determined the experimental relative error
(

∆2θ
2θ

)

System
.Steepness: (

∆2θ

2θ

)

System

=
(115 − 30) · 10−3

90 − 31.5
=

85.5 · 10−3

58.5
= 1.45 · 10−3 (24)The steepness of the graph in �g 3 gives us the relative error of the system. This relativeerror is the same for the unknown substance, so we can correct the values for 2θ.

(2θ)Si ·
(

∆2θ

2θ

)

System

= (∆2θ)Unknown (25)This produces the following values. The table also shows sin2(θ), (h2+k2+l2) and (h, k, l)which help calculating the lattice parameter a.
(∆2θ)Unknown sin2(θ) (h2 + k2 + l2) (h, k, l)0.040 0.0556 3 (1,1,1)0.046 0.0743 4 (2,0,0)0.061 0.1295 7 �0.066 0.1488 8 (2,2,0)0.078 0.2039 11 (3,1,1)0.199 0.3725 20 (4,2,0)0.122 0.4472 24 (4,2,2)9
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Figure 3: Relative system error is gained from the steepness of the red line. Values in degrees.We knew that the current lattice type forbids scattering on planes with mixed (h, k, l), sothe lowest possible combination was (1, 1, 1). We calculated the other values for (h2+k2+l2)using this iteration:
(h2 + k2 + l2)n+1 =

sin2(θ)n+1

sin2(θ)n
(h2 + k2 + l2)n (26)The value for a and its error were derived from a least squares �t with gnuplot. sin(θ) wasplotted over λ

2

√
h2 + k2 + l2 (see �g. 4). The steepness m (see equ. (27)) of the red graphgives us the inverse lattice parameter 1

a
. The error computes as follows: ∆a =

∣

∣

1
m2

∣

∣.
sin(θ) = m

λ

2

√

h2 + k2 + l2 (27)
a[Å] ∆a[Å]

5.65 4 · 10−2The literature value of a is 5.62779 and the unknown substance we analysed was NaClwhich is ordinary cooking salt. Its lattice type is sc.4.3 Lattice parameter and type via ∆2θIn the next experiment we investigated anatase which is T iO. We tried to calculate the latticeparameters a and c of this substance comparing two peaks of a relative intensity greater than20% with each other. With equation 28 we can calculate the parameters a and c.
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Figure 4: Plot of sin(θ) over λ
2

√
h2 + k2 + l2 to �nd a and ∆a. The errorbars have beenderived from sin

(

(∆2θ)
2

) via gaussian error propagation.
∆ sin2 θ =

λ2

4

[

(

h2

a2
+

k2

a2
+

l2

c2

)large angle − (

h2

a2
+

k2

a2
+

l2

c2

)small angle] (28)As the large angle peak we chose the one with 15.62% intensity at an angle of 82.679◦.With the help of an excel spreadsheet we calculated the following data for anatase:
2θ [◦] (h, k, l) a[Å] c[Å]Large angle peak 82.679 (2,2,4)Smaller angle peaks 25.304 (1,0,1) 3.7842 9.508437.819 (0,0,4) 4.3101 10.829748.031 (2,0,0) 3.7841 9.507953.915 (1,0,5) 3.7850 9.510355.055 (2,1,1) 3.7840 9.507762.698 (2,0,4) 3.7847 3.509475.065 (2,1,5) 3.7859 9.5127Mean 3.86 ± 0.2 (5%) 9.70 ± 0.5 (5%)Literature 3.7840 9.5118We can see that even without a calibration sample we can determine the lattice constantsto a precision of 5%. The structure of T iO2 is bcc.

11



4.4 Grain size of a nano-crystalline sampleIn this last part of our experiment we want to measure the grain size of the crystallites in oursample. To do this we compare the full width at half maximum (FWHM) of the peaks in thedi�ractogram of a nano-crystalline sample and of a sample with macroscopic grains. As asample we use platinum both times and do not change anything else in the setup. We knowthat platinum has an fcc structure. This way the change in the FWHM results only from adi�erence in grain size. We looked at two speci�c peaks and compared their widths:
2θ [◦] FWHM macro [◦] FWHM nano [◦] ∆2θ [◦]39.961 0.249 1.325 1.03267.680 0.311 2.034 1.672Using the Scherrer-formula

B =
0.89 · λ

cos θ · ∆2θ
(29)we gain values for B and the number N of unit cells per grain:

2θ [◦] B N39.961 81.065 2167.680 56.614 14We can see that our values are not very precise and we only looked at two di�erent peaks,but we can gain a good estimate for the grain size with this simple method.5 Concluding Questions5.1 Shift in the Kα2 peaks at large anglesThe distance between the Kα1 and the Kα2 peaks are bigger at large angles than the distancebetween the peaks at small angles, because of Bragg�s law. If we have a look at the totaldi�erential:
dλ = 2d cos θdθ (30)With ∆λ = λKα1

− λKα2
we get:

∆λ = 2d cos θ∆θ (31)Now we see that
∆θ ∝ cos−1 θ (32)Thus the peak splitting becomes more and more visible towards larger angles.
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5.2 X-Ray Analysis of matter with high ∆ZIf we have a bond of elements with di�erent atomic numbers, the structure factor is
F = f1

∑

r1

e2πi(ur1
·h+vr1

·k+wr1
·l) + f2

∑

r2

e2πi(ur2
·h+vr2

·k+wr2
·l) (33)The problem to detect re�exes of molecules with a high ∆Z lies in the atomic form factorf (= amplitude of the scattered wave by one electron). For θ = 0 we have f = Z andwith varying θ f ∝ sin θ is valid for all the elements. So from highly di�erent Z follow verydi�erent form factors. It follows that the intensity scattered by heavy elements is larger asthe intensity scattered by light elements. The di�erent intensities are hard to detect in thedi�ractogram.5.3 Forbidden re�exesThe intensity of Bragg re�exes is given by:

I(h, k, l) = I0 · |F (h, k, l)|2 · p ·
(

1 + cos2 2θ

2 sin2 θ · cos θ

) (34)
F (h, k, l) =

∑

r fr · e2πi(hur+kvr+lwr) is called structure factor. If the atomic numbers areequal, we can pull the atomic form factor out of the sum
F (h, k, l) =

∑

r

fr · e2πi(hur+kvr+lwr) (35)
⇒ F (h, k, l) = f ·

∑

r

e2πi(hur+kvr+lwr) (36)
⇒ F (h, k, l) = f · S(h, k, l) (37)

S(h, k, l) is called geometrical structure factor. If it is equal to zero there are forbiddenre�exes, even if the Bragg equation says that a re�ex exists. Forbidden re�exes are not visiblein the di�ractogram.5.4 Analysing Cu samples with Cu anodesYou can analyse a copper sample with the x-ray radiation of a copper anode, because the
Kα1-line belongs to the energy di�erence between the K- and the L-shell. So the radiation canonly hit electrons out of the higher orbitals of a copper atom, because the energy is not highenough to fully eject electrons from the innermost shells of the atom. The radiation which isemitted (so called �uorescence-x-ray-radiation) can be identi�ed in the di�ractogram.5.5 Grain size weightThe Scherrer equation reads:

∆2θ =
0, 89 · λ
B · cos θ

(38)13



∆2θ is the widening of the Bragg re�exes, because of the limited grain size. B is the grainsize. In this case ∆2θ is the full with at half maximum of the peaks (FHWM). Small valuesfor B (B � 1Å) result in large values for the FHWM, whereas large values for B result insmall values for the FHWM. This means that small values for B must have a greater weightin the average than larger values for B.5.6 Consequences of inelastic scatteringThe physical size which is responsible for this is the Debye-Waller factor. It describes theintensity of the peaks in relation to the temperature:
I = I0e

− 1

3
| ~G|2〈u2〉 (39)The size 〈u2〉 is the root mean square of the deviation of the position of the atoms in thelattice and ~G is a reciprocal lattice vektor. If the temperature increases, the atoms in thelattice oszillate more and u gets larger. We see that the intensity decreases, because theargument of the exponential in the Debye-Waller factor is negative. Therefore the peaksshrink with increasing temperature.U does also depends on the elastic constants of our sample. There are two e�ects:

• The thermal agitation causes the planes to deviate from the mathematical planes usedby the Bragg law. The reinforcement of the scattered waves is not really perfect.Therefore the intensity of the peaks is lower.
• Temperature causes di�use scattering: the vibration of the atoms causes general coher-ent scattering in all directions thus increasing the background of the di�ractogramm.
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