

nurdlib – new DAQs in a jiffy

“Copy, paste, hack, make, debug, rinse, repeat...”
 No thx.

14.3.2017
Bastian Löher

Most slides courtesy H. T. Törnqvist

Introduction
● Text-configurable readout

– YAAAAARlib (Yet Another Attempt At An Absolute Readout library)
– nurdlib (NUstar ReaDout library)

● Reduce time and work to setup a VME crate
● Many tested features
● Easy debugging
● In the future, generated human-readable configs (based on

cabling documentation!) and unpacker specification

The (good?) old way
1) 27 f_users scattered all over

2) Copy code

3) Hack in parameters from memory/manuals

4) Glue together

5) Build, go to 2 until successful

6) Run, go to 2 (or 3) until data are (seemingly) pretty

7) Do the same for each crate / computer

8) Cross your fingers (optional)

The nurdlib way

1) Build nurdlib once

2) Write small config file for each crate

3) Lean back and smile (mandatory)

(Disclaimer: at least this is the plan...)

http://web-docs.gsi.de/~land/nurdlib/

Overview
http://web-docs.gsi.de/~land/nurdlib/

Advantages with nurdlib
● Many (potentially complex) features supported
● Git version control from the start

– Collaborative work, continuous integration testing
– Bug history raids, bisecting, all the good stuff

● Useful features may stay
● nurdlib battered with unit tests

– Config parser, getter, utility code, default module modes, crate state, and more...
– Tests added after bugs to prevent regression
– Performed offline

● Build system is GNU make + portability ensured by htools add-on
● Code is strictly C89, so all compilers should understand

Currently supported modules
● Caen

– v775, v785, v792, v820, v830, v895, v965, v1190, v1290, (dt5790)
● GSI

– sam, tacquila, tridi(trlo2), triva, vetar, vftx2, vulom(trlo2), vuprom(TDC)
● Mesytec

– madc32, mqdc32, mtdc32
● PNPI - cros3
● Struck SIS - sis3316
● Dummy module for testing without hardware
● + Anything we can get our hands on

Other nice features
● Not bound to underlying DAQ software (e.g. MBS)
● Runs on RIO2+3+4, MVME, x86PC, raspberry Pi (arm)
● DMA block-transfer

– Static and dynamic mapping automatic, if hardware supports it
– Mapping ‘poked’ before execution to prevent system hanging

● Multi-events
– nurdlib computes and configures designated TRLO2 trigger module

● Sane module default settings are provided
● Automatic pedestal estimation → automatic thresholds
● Adaptive CVT setting

Other nice features
● Online data-checking

– Fast simple verification during readout
– Thorough testing can be done when processor not busy

● ‘Shadowed’ readout
● Per module log level setting (when debugging / setting up a single

module)
● Module memory testing
● Runtime control program

– List modules, dump modules, change register settings, get DAQ timestamp

But this must be huge!
● We are simple-minded, we like it simple

– Simple code → simple states
– Spaghetti belongs on a plate
– Regression testing (don’t trust myself (or others...))

● 1.25 MB “online” source code
– 197 kB general code + 40 kB default configs
– 800 kB module code

● Module support can be chosen when building
– 157 kB test code + 3.5 kB test configs
– 150 kB generated code
– 40 kB control program

So what does a config file look like?

log_level = info

The second parameter is an ID for the crate.
CRATE(“MyCrate”, 0) {
 multi_event = true
 GSI_TRIDI(0x02000000) {
 trlo2_master = true
 }
 CAEN_V775(0x00400000) {
 time_range = 600 ns
 }
 GSI_VFTX2(0x09000000) {
 }
}

Caen and GSI TDC with multi-events and master TRIDI

DAQ broke? git diff!

diff --git a/main.cfg b/main.cfg
index f345ad7..a6462b9 100644
--- a/main.cfg
+++ b/main.cfg
@@ -7,8 +7,10 @@ CRATE(“MyCrate”, 0) {
 trlo2_master = true
 }
 CAEN_V775(0x00400000) {
 time_range = [-600-]{+300+} ns
 }
 GSI_VFTX2(0x09000000) {
 {+channel_enable = 0..5+}
{+ clock_input = external+}
 }
}

“Hmm, too short TDC window, or missing clock signal?”

Copy-paste from terminal “git diff --word-diff”

Default config example

channel_enable = 0..31
channel_invert = ()

Don’t print header if no channels fired
verbose = false

lemo or ecl.
trigger_input = lemo

internal or external, internal by default because
external without a clock requires a module reboot.
clock_input = internal

GATE {
 time_after_trigger = -1us
 width = 1us
}

Copy-paste from current VFTX2 default config

Integration with DAQ

Setup nurdlib (e.g. at f_user_init())
struct Crate *nurdlib_setup(config_path)

Shutdown nurdlib (e.g. atexit())
nurdlib_shutdown(crate)

In the readout loop (e.g. f_user_readout())
crate_readout_prepare(crate) // before any readout
crate_readout(crate, buffer, size) // actual readout
crate_readout_finalize(crate) // after readout

For trigger logic data
crate_tpat_get()
crate_timestamp_get()
crate_master_get()

Simple interface to underlying DAQ code

Integration with DAQ
● Example glue code for R3B experiments exists

– mbs ↔ r3bfuser nurdlib↔
● You probably need your own special tricks
● r3bfuser could be a basis

– handles scalers from trlo and sends them via udp
– reads timestamps and tpat from trigger logic
– pileup histogramming
– onspill/offspill trigger handling

Full DAQ - MBS
● What does a functioning DAQ directory look like?

– htools (portability + test facility)
– nurdlib (readout library)
– trloii (trigger logic library)
– r3bfuser (glue code)
– mbs (DAQ, not actually inside the DAQ directory)
– r4l-10 (configuration for a single node)

● main.cfg (nurdlib config)
● setup_standalone.usf (DAQ config)
● tridi.trlo (trigger logic config)
● trloii_setup.sh (triva mimic setup)

– r4l-xx ...

Full DAQ - MBS
● What does a functioning DAQ directory look like?

– htools (portability + test facility)
– nurdlib (readout library)
– trloii (trigger logic library)
– r3bfuser (glue code)
– mbs (DAQ, not actually inside the DAQ directory)
– r4l-10 (configuration for a single node)

● main.cfg (nurdlib config)
● setup_standalone.usf (DAQ config)
● tridi.trlo (trigger logic config)
● trloii_setup.sh (triva mimic setup)

– r4l-xx ...

These are static! No changes needed!

Full DAQ - drasi
● What does a functioning DAQ directory look like?

– htools (portability + test facility)
– nurdlib (readout library)
– trloii (trigger logic library)
– r3bfuser (glue code)
– drasi (DAQ)
– r4l-11 (drasi)

● main.cfg (nurdlib config)
● master.sh (DAQ config)
● tridi.trlo (trigger logic config)
● trloii_setup.sh (triva mimic config)

– x86l-31 (event builder)
● eb.sh (event builder config)

Add-Ons
● nurdlib does not need, but can make use of

– TrLoII trigger logic on VULOM or TRIDI
– TRIVA style trigger logic
– TRIXOR/PEXOR in development for

tamex/febex/nxyter

Timeguide (when is it ready?)
● Started by A. Charpy, Chalmers
● Continued by H. Törnqvist + B. Löher, TUD and M. Munch, Århus

● Used in every R3B experiment since 2014
– Initially not for all detectors/systems, but now nearing completion!

● Used in some places at ESR, FRS
● External users: Riken, Duke University, Århus, ISOLDE@CERN
● Under active development

– Everyone is welcome to try and test and submit bug reports!
● Nurdlib will be central ingredient of Nustar DAQ

References
● nurdlib: http://web-docs.gsi.de/~land/nurdlib/
● trloii: http://fy.chalmers.se/~f96hajo/trloii/
● htools: https://hanstt@bitbucket.org/hanstt/htools
● r3bfuser: /u/htoernqv/repos/r3bfuser.git
● ucesb: http://fy.chalmers.se/~f96hajo/ucesb/
● installdaq: /u/bloeher/git-bare/installdaq.git

http://web-docs.gsi.de/~land/nurdlib/
http://fy.chalmers.se/~f96hajo/trloii/
http://fy.chalmers.se/~f96hajo/ucesb/

Requests are welcome
● Would you like something?
● Are you worried about a feature?
● Are you even a willing tester?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

