
Photonen/Neutronen-Diskriminierung mit digitaler Pulsformanalyse

Photon/Neutron discrimination with digital pulse shape analysis

Bachelor – Vortrag Bastian Löher

Gliederung

- Motivation und Ziele
- Einstieg in die Pulsformanalyse
- Experimenteller Aufbau
- Datenauswertung
- Ergebnisse
- Zusammenfassung und Ausblick

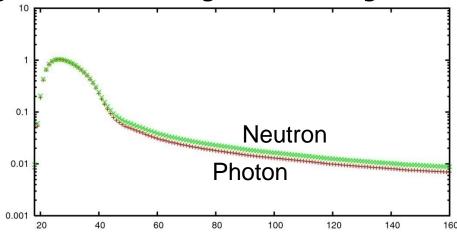
Motivation

- Warum Photonen-/Neutronen Diskriminierung?
 - Entwicklung zur Anwendung am Photonentagger NEPTUN
 - Experimentell bedingt hoher Photonenuntergrund
 - Nur Neutronenereignisse sollen detektiert werden
 - Separation anhand der Pulsform

Motivation II

- Warum digitale Pulsformanalyse?
 - Weniger Konfigurationsaufwand
 - Stabileres Trennverhalten
 - Automatische Regulierung möglich
 - Universell verwendbare Software und Algorithmen
 - Verfügbarkeit entsprechender Hardware

Ziele

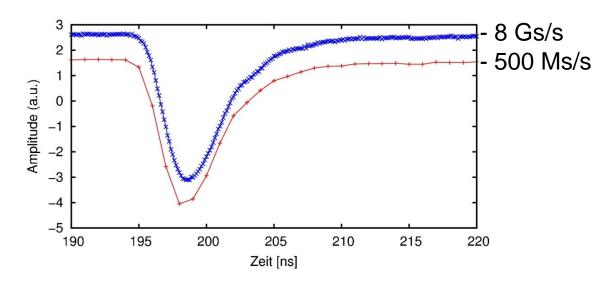


- Ziele dieser Arbeit:
 - 1. Aufnahme digitaler Signale zur Durchführung von (n,γ)-Diskriminierung unter Laborbedingungen
 - 2. Entwicklung einer PC-gestützten Offline-Analysesoftware zur Durchführung der Diskriminierung
 - 3. Untersuchung der erzielbaren Trennschärfe unter Variation verschiedener Parameter

Einstieg in digitale PSD Pulsformen

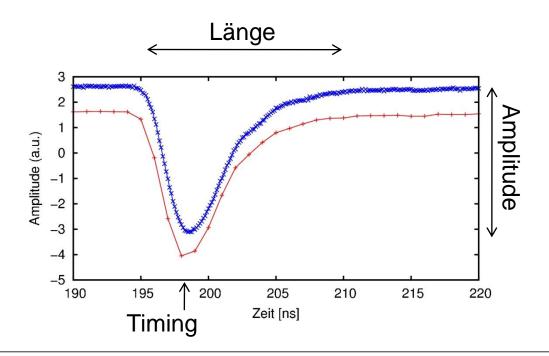
- Entstehung unterschiedlicher Neutronen- und Photonensignale durch verschiedene Prozesse im Szintillator
 - Neutronen: Rückstoßprotonen
 - Photonen: Comptoneffekt
- Neutronensignal enthält langsam abklingende Komponente:

Einstieg in digitale PSD Ablauf


- Vier aufeinanderfolgende Schritte bis zur automatischen Diskriminierung
 - Digitalisierung der Detektorsignale mit Hilfe eines schnellen Flash-ADCs
 - Offline-Datenanalyse eines repräsentativen Datensatzes (Lerndatensatz/Training Set)
 - Bestimmung von Signalprototypen für jede Art von Signal
 - Online-Vergleich der aufgenommenen Detektorsignale mit den Prototypen

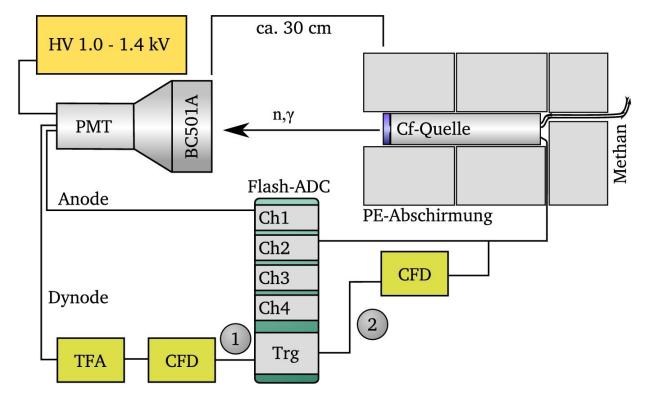
Einstieg in digitale PSD Aufnahme der Signale

- Für diese Arbeit
 - Flash-ADC mit 8 Gs/s bei 10 bit Auflösung (1024 Kanäle)
- Am Experiment geplant
 - Mehrkanal-ADC mit 500 Ms/s und 12 bit Auflösung (4096 Kanäle)



Einstieg in digitale PSD Offline-Signalanalyse

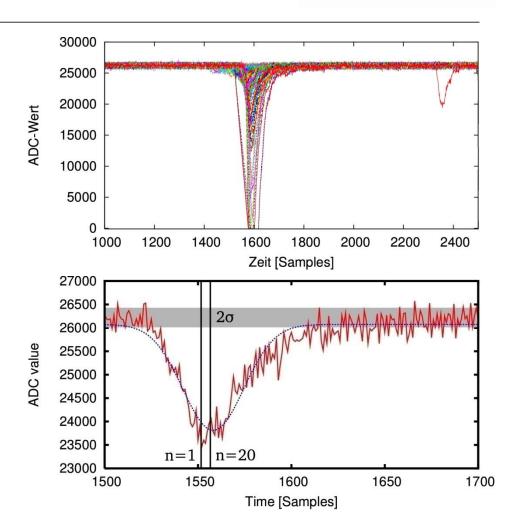
- Bestimmung verschiedener Parameter der Signale
- Mehrere verschiedene Algorithmen verwendbar
- Kompromiss zwischen Genauigkeit und Geschwindigkeit



Experimenteller Aufbau

- Schematische Darstellung
 - 2 Unterschiedliche Triggermöglichkeiten 1 und 2

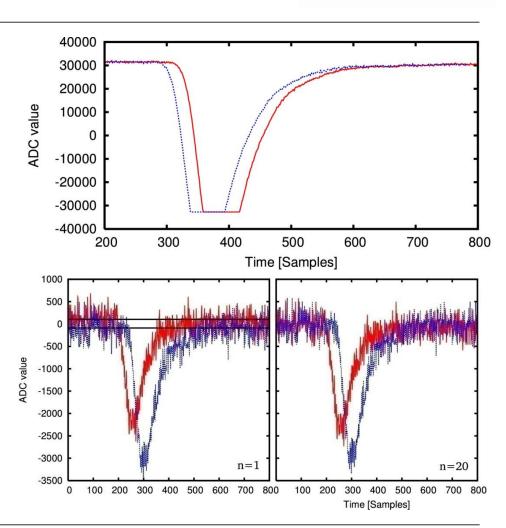
Ziele


- Ziele dieser Arbeit:
 - 1. Aufnahme digitaler Signale zur Durchführung von (n,γ)-Diskriminierung unter Laborbedingungen
 - 2. Entwicklung einer PC-gestützten Offline-Analysesoftware zur Durchführung der Diskriminierung
 - 3. Untersuchung der erzielbaren Trennschärfe unter Variation verschiedener Parameter

Datenauswertung

- Rohsignale analysieren
 - Keine direkte Separation mit Rohdaten möglich
 - Aufbereitung nötig

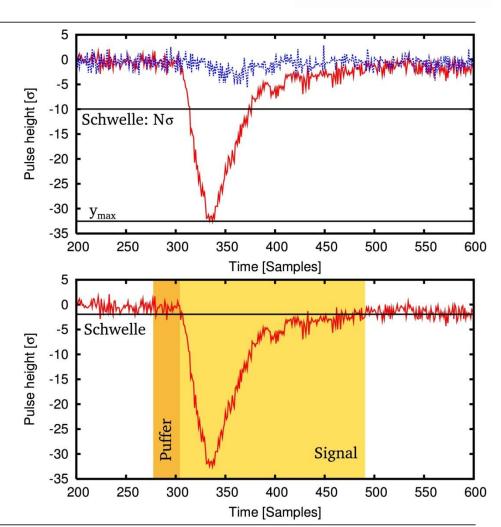
- Grundlegende Eigenschaften der Signale bestimmen
 - Peakposition
 - Durchschnitt
 - Varianz



Datenauswertung II

- Clipping
 - Entfernung von Signalen außerhalb des dynamischen Umfangs

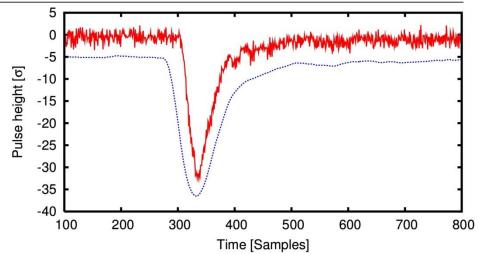
- Baseline Korrektur
 - Durchschnittswert als Näherung für Baseline
 - Baseline konstant über Länge des Signals (200 – 300 ns)

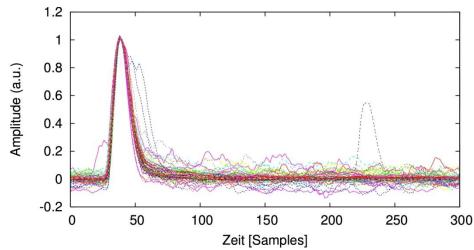


Datenauswertung III

- Statistischer Trigger
 - Triggerschwelle in Einheiten der Varianz (σ)
 - Unabhängig von Rauschpegel und Baseline

- Grenzen des Signals
 - Pufferbereich vor dem Signal
 - Bestimmung der Time over Threshold




Datenauswertung IV

- Filterung
 - FIR Filter (Box oder linear)
 - Rauschunterdrückung
 - Nur langsame Komponenten wichtig

- Ausrichten der Signale
 - Peakposition
 - Anstiegsflanke
 - Trennung der Klassen möglich

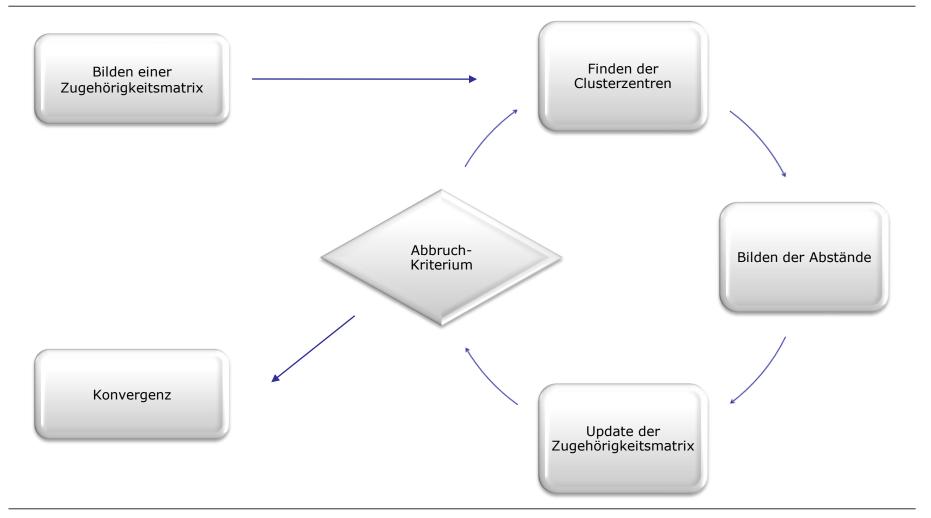
Pulsform-Diskriminierung Fuzzy C-Means Einleitung

 Nutzung des ISODATA Fuzzy C-Means Algorithmus zur Klassifizierung der Datensätze [1]

- Klassifizierungsalgorithmus der multivariaten Statistik
- Fuzzy-Logik (Unscharfe Klassifizierung erlaubt)
- Iterativ
- Selbstlernend
- Universell

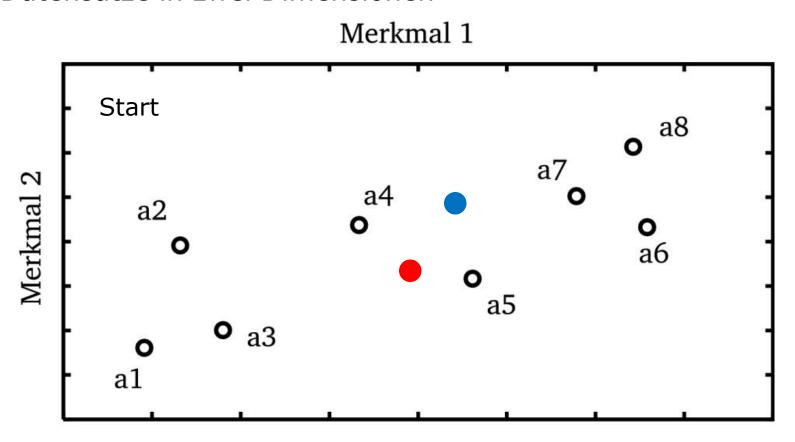
[1] R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification. John Wiley and Sons Inc., 2nd Ed., New York 2001

Pulsform-Diskriminierung Fuzzy C-Means Einleitung

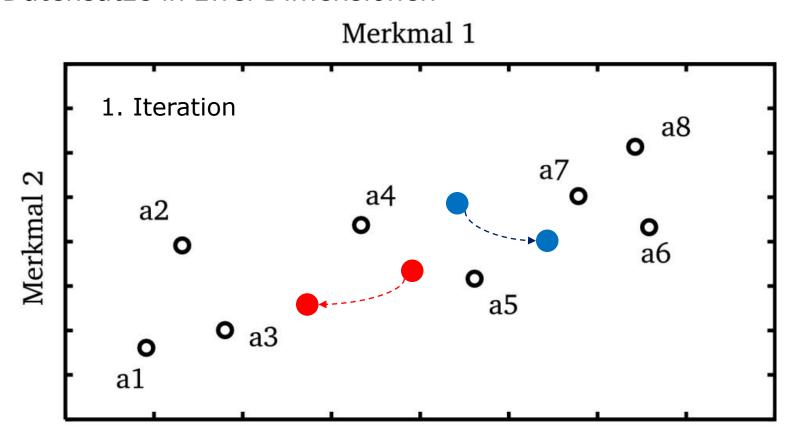


- Signale a_i sind Vektoren im n-dimensionalen Phasenraum
 - Ähnliche Signale bilden ähnliche Vektoren
 - Statistische Verteilung im Phasenraum als Punktwolken
 - Unterschiedliche Pulsformen erzeugen getrennte Punktwolken
 - Mittelpunkte c_j dieser Punktwolken sind gesuchte Prototypen der Signalklassen

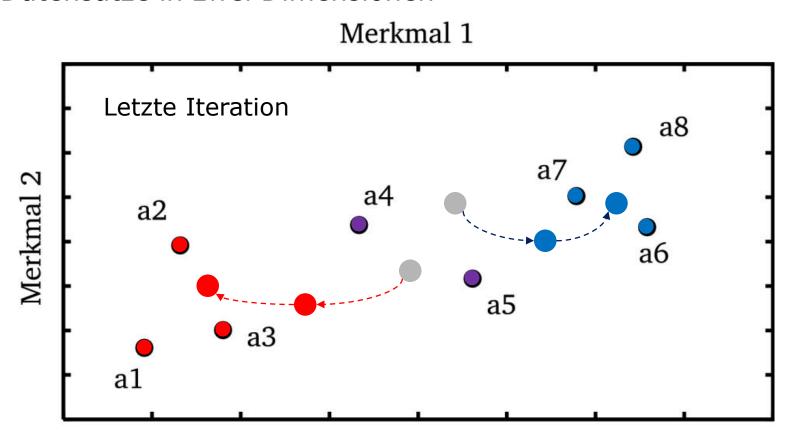
Pulsform-Diskriminierung Fuzzy C-Means Überblick



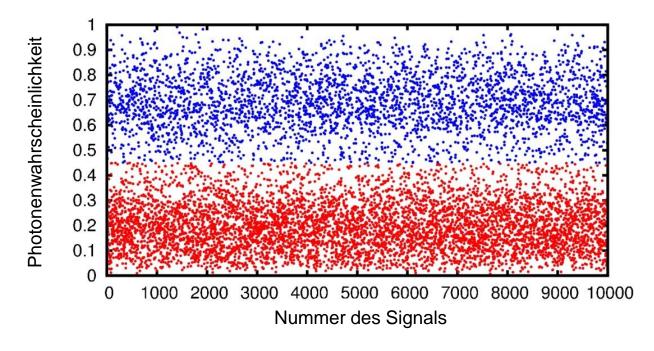
Pulsform-Diskriminierung Fuzzy C-Means Beispiel


8 Datensätze in zwei Dimensionen

Pulsform-Diskriminierung Fuzzy C-Means Beispiel


8 Datensätze in zwei Dimensionen

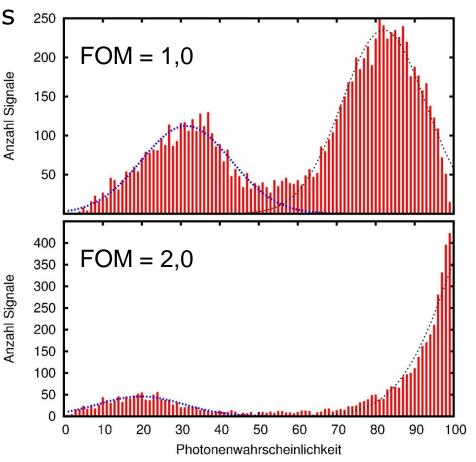
Pulsform-Diskriminierung Fuzzy C-Means Beispiel


8 Datensätze in zwei Dimensionen

Pulsform-Diskriminierung Fuzzy C-Means Ergebnis

Zugehörigkeitsmatrix nach Konvergenz

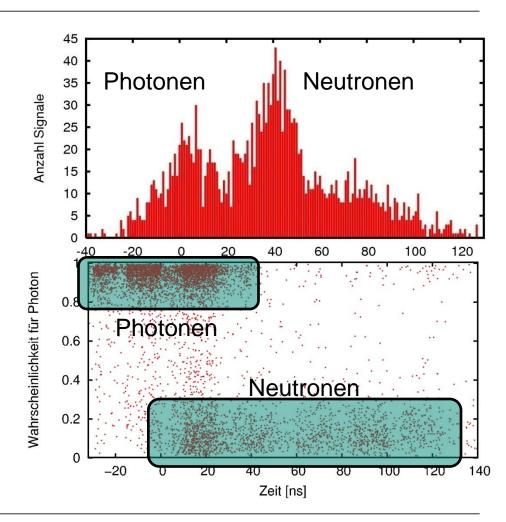
 Auftragung als Histogramm ermöglicht Aussage über Trennschärfe


Pulsform-Diskriminierung Figure of Merit

- Trennschärfe des Algorithmus
 - Figure of Merit (FOM) als Maß für die Trennschärfe

$$FOM = \frac{d(n, \gamma)}{\sum_{i} FWHM_{i}}$$

Übliche Werte zwischen 0,8 und 1,8

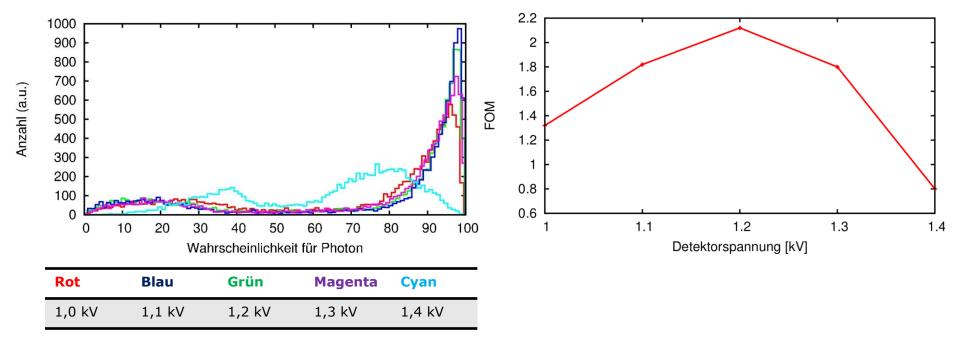


Pulsform-Diskriminierung Time of Flight

- Flugzeitanalyse zur Bestätigung der Trennung
 - Flugzeitdaten durch geringe Zeitauflösung nur unscharf

- Kombinierte Flugzeitanalyse und FCM-Klassifizierung
 - Trennung ist in beiden Dimensionen sichtbar

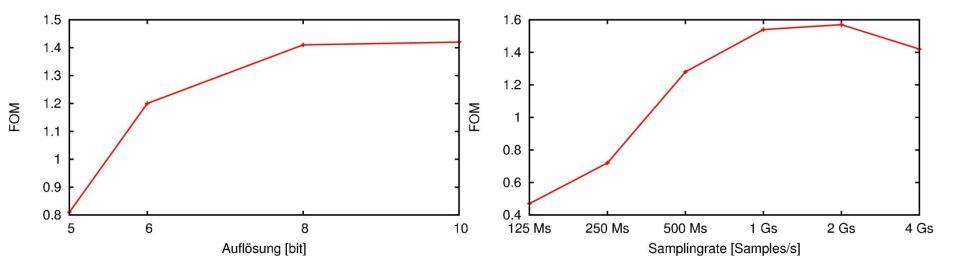
Ziele


Ziele dieser Arbeit:

- 1. Aufnahme digitaler Signale zur Durchführung von (n,γ)-Diskriminierung unter Laborbedingungen
- Entwicklung einer PC-gestützten Offline-Analysesoftware zur Durchführung der Diskriminierung
- 3. Untersuchung der erzielbaren Trennschärfe unter Variation verschiedener Parameter

Ergebnisse Hochspannung

Variation der Hochspannung am Detektor zwischen 1 und 1,4 kV


- FOM bildet Plateau zwischen 1,1 und 1,3 kV Hochspannung
- Angegebene Detektorspannung liegt bei 1,3 kV

Ergebnisse Bit- und Samplingraten

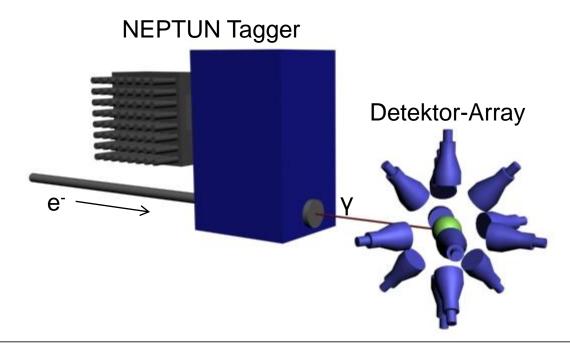
 Variation der Bitanzahl zwischen 4 und 10 bit und der Samplingraten zwischen 75 Ms/s und 4 Gs/s

- Sättigung: mehr als 8 bit oder mehr als 500 Ms/s
- Bitanzahlen kleiner als 5 bit und Samplingraten kleiner als 125 Ms/s nicht auswertbar

Zusammenfassung

- Digitale Pulsformdiskriminierung mit Neutronendetektoren erfolgreich durchgeführt
- Zweckgebundene Software basierend auf universellen Methoden entwickelt
- Figure of Merit unter Variation verschiedener Parameter untersucht
 - Flash-ADC mit 500 Ms/s bei 10 bit Auflösung zur Diskriminierung von Photonen gegenüber Neutronen geeignet
- FCM-Methode durch Time of Flight Auswertung bestätigt

Ausblick



- Neutroneneffizienz und Mindestenergie
 - Bessere Flugzeitmessungen werden Bestimmung ermöglichen
- Anwendung an NEPTUN

Ausblick Aufbau am Photonentagger

- Masterarbeit von V. Simon
 - Neutronendetektor-Array in 4π Geometrie
 - Mischung von BC501A und BC523A Detektoren
 - Mischung unterschiedlicher ADCs

Ausblick

- Neutroneneffizienz und Mindestenergie
 - Bessere Flugzeitmessungen werden Bestimmung ermöglichen
- Anwendung an NEPTUN
 - Implementierung einer Datenaufnahmesoftware für digitale ADCs in der Entwicklung
 - Zunächst Archivierung der vollen Signalspuren und anschließende Offline-Analyse
 - Mittelfristig Online-Signalanalyse in Hardware, Kollaboration mit M.Vencelj und M.Miklavec (Institut Jožef Stefan, Slovenien)
- Untersuchung der Eignung weiterer Detektortypen zur Pulsformdiskriminierung (ZnS, Li-Glass)

Ende

Vielen Dank für Ihre Aufmerksamkeit

Pulsform-Diskriminierung Fuzzy C-Means Algorithmus

- Zugehörigkeitsmatrix U:
 - Zugehörigkeit des i-ten Datensatzes zur j-ten Klasse
 - zu Beginn mit Zufallswerten gefüllt

$$U = \begin{pmatrix} u_{11} & \cdots & u_{1c} \\ \vdots & \ddots & \vdots \\ u_{n1} & \cdots & u_{nc} \end{pmatrix}$$

- Ziel
 - Möglichst gute Approximation der Klassenmittelpunkte finden

Pulsform-Diskriminierung Fuzzy C-Means Algorithmus II

- Minimierungsproblem:
 - Gewichteter quadratischer Abstand jedes Signals zu jedem Klassenmittelpunkt c_i soll minimiert werden:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{c} u_{ij}^{m} d(i, j)^{2}$$

Nebenbedingung

$$\sum_{i=1}^{c} u_{ij} - 1 = 0 \quad \forall i$$

- Ansatz: Lagrange'sches Lösungsverfahren
 - Variationsproblem unter n Nebenbedingungen

$$L = J - \sum_{i=1}^{n} \lambda_i Z_i = \sum_{i=1}^{n} \sum_{j=1}^{c} u_{ij}^{m} d(i, j)^2 - \lambda_i \left(\sum_{j=1}^{c} u_{ij} - 1 \right)$$

Pulsform-Diskriminierung Fuzzy C-Means Algorithmus III

- Gradient von L muss verschwinden
 - Lösungen des Problems stellen Iterationsschritte dar
 - Klassenmittelpunkte c_i
 - Zugehörigkeitswerte uii

$$c_{j} = \frac{\sum_{i=1}^{n} a_{i} u_{ij}^{m}}{\sum_{i=1}^{n} u_{ij}^{m}}$$

$$u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{d(i,j)}{d(i,k)}\right)^{\frac{2}{m-1}}}$$

- c_i werden den Mittelpunkten iterativ angenähert
- Abbruchkriterium beim r-ten Iterationsschritt:

$$||U(r-1)-U(r)|| < \varepsilon$$

Die u_{ij} enthalten zum Schluss die Zugehörigkeitswerte

